文章目录
209.长度最小的子数组
给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
提示:
1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 105
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-size-subarray-sum
思路:滑动窗口。初始左右窗口相等。
1.左窗口不变,滑动右窗口使子数组和大于target,更新子数组长度。
2.再将左窗口向右更新一个位置,再重复1步骤。
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int length=100001;//;length初始化为数组长度最大值
int i=0,j=0;
int result=0;//记录子数组的和
for(i;i<nums.size();i++)
{
result+=nums[i];//右窗口
while(result>=target)//当子数组和大于target值时,滑动左窗口
{
if(length>i-j+1)//将最小长度赋值给length
length=i-j+1;
result=result-nums[j++];//滑动左窗口
}
}
if(length==100001)//当length等于初始值时,说明未找到符合的子数组,返回0
return 0;
else
return length;
}
};
904.水果成篮
在一排树中,第 i 棵树产生 tree[i] 型的水果。
你可以从你选择的任何树开始,然后重复执行以下步骤:
把这棵树上的水果放进你的篮子里。如果你做不到,就停下来。
移动到当前树右侧的下一棵树。如果右边没有树,就停下来。
请注意,在选择一颗树后,你没有任何选择:你必须执行步骤 1,然后执行步骤 2,然后返回步骤 1,然后执行步骤 2,依此类推,直至停止。
你有两个篮子,每个篮子可以携带任何数量的水果,但你希望每个篮子只携带一种类型的水果。
用这个程序你能收集的水果树的最大总量是多少?
示例 1:
输入:[1,2,1]
输出:3
解释:我们可以收集 [1,2,1]。
示例 2:
输入:[0,1,2,2]
输出:3
解释:我们可以收集 [1,2,2]
如果我们从第一棵树开始,我们将只能收集到 [0, 1]。
示例 3:
输入:[1,2,3,2,2]
输出:4
解释:我们可以收集 [2,3,2,2]
如果我们从第一棵树开始,我们将只能收集到 [1, 2]。
示例 4:
输入:[3,3,3,1,2,1,1,2,3,3,4]
输出:5
解释:我们可以收集 [1,2,1,1,2]
如果我们从第一棵树或第八棵树开始,我们将只能收集到 4 棵水果树。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/fruit-into-baskets
思路:这道题其实是求只有两种不同数值的元素并且长度最大的子数组。依旧使用滑动窗口。
注意:使用unordered_map去重,并记录窗口内部的元素。
class Solution {
public:
int totalFruit(vector<int>& fruits) {
int i=0,j=0;//j为右窗口,i为左窗口
int length=0;//记录水果树的总量
unordered_map <int,int> target;
for(j=0;j<fruits.size();j++)
{
target[fruits[j]]++;//当水果篮未用完时,将这棵树的苹果装篮
while(target.size()>2)//当水果篮用完时
{
if(length<j-i)
length=j-i;//于上次装满篮子的水果树总量做对比,记录下最大装篮的水果树的总量
target[fruits[i]]--;//体现窗口移动,减去左窗口位置处的水果树
if(target[fruits[i]]==0)//若左窗口的水果树类型在窗口内为零,则删除此类型的水果树
target.erase(fruits[i]);
i++;//更新左窗口的初始位置
}
}
if(length<j-i)//退出循环时,窗口内的水果树总量小于等于2,需要再进行一次length的更新
length=j-i;
return length;
}
};