凸优化学习笔记<1>仿射集合和凸集

直线和线段

x1 x2 Rn 空间中两个点,且 x1x2 ,那么

y=θx1+(1θ)x2,θR

组成了一条穿过 x1 x2 的直线。如果 θ=0 ,则 y=x2 ,如果 θ=1 y=x1 。当 θ[0,1] 时, y 组成了x1 x2 之间的线段。

这里写图片描述

彷射集合

如果有集合 CRn ,且穿过集合 C 中任意两点的直线仍然在集合C中,则称该集合是仿射的。用公式来表达就是: x1,x2C θR ,都有 θx1+(1θ)x2C 。也就是说,集合 C 包含C中任意两点系数和为1的线性组合。
推广到多个点。如果 θ1++θk=1 ,则称 θ1x1++θkxk x1,,xk 的彷射组合。一个仿射集合包含集合内任意点的仿射组合,即如果 C 仿射,x1,,xkC,且 θ1++θk=1 ,则一定有 θ1x1++θkxkC
如果集合 C 仿射,且x0C,则集合

V=Cx0={xx0|xC}

是一个子空间。
证明:
v1,v2V , α,βR ,根据 V 的定义有v1+x0C,v2+x0C。容易看出
αv1+βv2+x0=α(v1+x0)+β(v2+x0)+(1αβ)x0,

因为 C 仿射且α+β+(1αβ)=1,可以得出 αv1+βv2+x0C ,即 αv1+βv2V ,也就是说集合 V 对加法和数乘是封闭的,因此V是一个子空间。
我们称集合 CRn 中点的所有仿射组合构成的集合为 C 仿射包。记为affC
affC={θ1x1++θkxk|θ1,,θkC,θ1++θk=1}.

仿射包是包含 C 的最小的仿射集合,也就是说,如果CS,且 S 仿射,则有affCS。该证明平凡。

几个例子:

1. 单点集的仿射包是它本身。
2. 包含两个点(两点不同)的集合的仿射包是穿过它们的直线。
3. 包含三个点(三点不共线)的集合的仿射包是穿过它们的平面。

凸集

如果集合 C 中任意两点间的线段仍然在C中,则称集合 C 为凸集。即对于x1,x2C θ[0,1] 都有

θx1+(1θ)x2C.

类似,我们称 θ1x1++θkxk x1,,xk 的凸组合,其中 θ1++θk=1 ,且 θi0,i=1,,k 。一个凸集包含集合内所有点的凸组合。
我们称集合 C 中所有点的凸组合组成的集合为集合C的凸包,记为 convC ,
convC={θ1x1++θkxk|xiC,θi0,θ1++θk=1}.

凸包总是凸的,是包含 C 的最小凸集。

这里写图片描述

凸组合的概念可以推广到无穷级数、积分以及大多数形式的概率分布。比如,假设θ1,θ2,满足

θi0,i=1,2,,i=1θi=1,

x1,x2,C C 为凸集。这时,如果级数ni=1θixi收敛,我们就有
i=1nθixiC.

更一般地,假设 p:RnR 为定义在 C 上的概率密度。那么,如果积分Cp(x)xdx存在,我们就有
Cp(x)xdxC

如果对于 xC θ0 都有 θxC ,我们就称集合 C 或者非负齐次。如果对于x1,x2C θ1,θ20 ,都有

θ1x1+θ2x2C,

我们就称 C 凸锥
在二维平面上,具有此类形式的点构成一个以0为起点的扇形。

这里写图片描述
具有θ1x1++θkxk,θ1,,θk0形式的点称为 x1,,xk 锥组合。和仿射(凸)组合一样,锥组合也可以推广到无穷级数和积分。
集合 C 锥包C中所有元素的锥组合的集合,即

{θ1x1++θkxk|xiC,θi0,i=1,,k}

锥包是包含 C <script type="math/tex" id="MathJax-Element-91">C</script>的最小的凸锥。

这里写图片描述

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
仿射仿射集、仿射组合凸集组合、锥、锥、正锥都是优化问题中常用的概念,下面我来简单解释一下它们的含义: 1. 仿射:指的是线性变换加上平移,即 $\mathbf{Ax}+\mathbf{b}$,其中 $\mathbf{A}$ 是一个矩阵,$\mathbf{b}$ 是一个向量。 2. 仿射集:指的是由仿射变换后的向量组成的集合。也就是说,对于一个仿射变换 $\mathbf{Ax}+\mathbf{b}$,它将一个向量集合 $\mathcal{X}$ 映射为另一个向量集合 $\mathcal{Y}$,那么 $\mathcal{Y}$ 就称为 $\mathcal{X}$ 的仿射集。 3. 仿射组合:指的是对于一个向量集合 $\mathcal{X}$ 中的向量 $x_1, x_2, \cdots, x_k$,它们的仿射组合表示为 $\sum_{i=1}^k \alpha_i x_i$,其中 $\sum_{i=1}^k \alpha_i=1$,$\alpha_i\geq 0$。 4. 凸集:指的是对于一个向量集合 $\mathcal{X}$,如果对于任意的 $x_1, x_2 \in \mathcal{X}$,$\theta x_1 + (1-\theta)x_2 \in \mathcal{X}$,其中 $0\leq \theta \leq 1$,则称 $\mathcal{X}$ 是凸集。 5. 组合:指的是对于一个向量集合 $\mathcal{X}$ 中的向量 $x_1, x_2, \cdots, x_k$,它们的组合表示为 $\sum_{i=1}^k \alpha_i x_i$,其中 $\sum_{i=1}^k \alpha_i=1$,$\alpha_i\geq 0$。 6. 锥:指的是对于一个向量集合 $\mathcal{X}$,如果对于任意的 $x\in \mathcal{X}$,$\theta x \in \mathcal{X}$,其中 $\theta\geq 0$,则称 $\mathcal{X}$ 是锥。 7. 锥:指的是一个凸集一个锥的交集,即对于一个向量集合 $\mathcal{X}$,如果它既是凸集又是锥,则称 $\mathcal{X}$ 是锥。 8. 正锥:指的是一个锥中的非空内部,即对于一个向量集合 $\mathcal{X}$,如果 $\mathcal{X}$ 是锥且存在一个向量 $x\in \mathcal{X}$,使得对于任意的 $y\in \mathcal{X}$,都有 $\langle x,y\rangle >0$,则称 $\mathcal{X}$ 是正锥。 希望以上解释能够让你更好地理解这些概念。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值