直线和线段
设x1和x2为Rn空间中两个点,且x1≠x2,那么
组成了一条穿过x1和x2的直线。如果θ=0,则y=x2,如果θ=1,y=x1。当θ∈[0,1]时,y组成了
彷射集合
如果有集合C⊆Rn,且穿过集合C中任意两点的直线仍然在集合
推广到多个点。如果θ1+⋯+θk=1,则称θ1x1+⋯+θkxk为x1,⋯,xk的彷射组合。一个仿射集合包含集合内任意点的仿射组合,即如果C仿射,
如果集合C仿射,且
是一个子空间。
证明:
设v1,v2∈V,α,β∈R,根据V的定义有
因为C仿射且
我们称集合C∈Rn中点的所有仿射组合构成的集合为C的仿射包。记为
仿射包是包含C的最小的仿射集合,也就是说,如果
几个例子:
1. 单点集的仿射包是它本身。
2. 包含两个点(两点不同)的集合的仿射包是穿过它们的直线。
3. 包含三个点(三点不共线)的集合的仿射包是穿过它们的平面。
凸集
如果集合C中任意两点间的线段仍然在
类似,我们称θ1x1+⋯+θkxk为x1,⋯,xk的凸组合,其中θ1+⋯+θk=1,且θi⩾0,i=1,⋯,k。一个凸集包含集合内所有点的凸组合。
我们称集合C中所有点的凸组合组成的集合为集合
凸包总是凸的,是包含C的最小凸集。
凸组合的概念可以推广到无穷级数、积分以及大多数形式的概率分布。比如,假设
且x1,x2,⋯∈C,C为凸集。这时,如果级数
更一般地,假设p:Rn→R为定义在C上的概率密度。那么,如果积分
锥
如果对于∀x∈C和θ⩾0都有θx∈C,我们就称集合C是锥或者非负齐次。如果对于
我们就称C为凸锥。
在二维平面上,具有此类形式的点构成一个以0为起点的扇形。
具有
集合C的锥包是
锥包是包含C的最小的凸锥。