凸优化学习笔记<1>仿射集合和凸集

本文探讨了几何空间中直线、线段、仿射集合、凸集和锥的基本概念及其性质。详细解释了仿射包、凸包和锥包的定义,并通过实例说明了这些集合的不同特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直线和线段

x1x2Rn空间中两个点,且x1x2,那么

y=θx1+(1θ)x2,θR

组成了一条穿过x1x2的直线。如果θ=0,则y=x2,如果θ=1y=x1。当θ[0,1]时,y组成了x1x2之间的线段。

这里写图片描述

彷射集合

如果有集合CRn,且穿过集合C中任意两点的直线仍然在集合C中,则称该集合是仿射的。用公式来表达就是:x1,x2CθR,都有θx1+(1θ)x2C。也就是说,集合C包含C中任意两点系数和为1的线性组合。
推广到多个点。如果θ1++θk=1,则称θ1x1++θkxkx1,,xk的彷射组合。一个仿射集合包含集合内任意点的仿射组合,即如果C仿射,x1,,xkC,且θ1++θk=1,则一定有θ1x1++θkxkC
如果集合C仿射,且x0C,则集合

V=Cx0={xx0|xC}

是一个子空间。
证明:
v1,v2V,α,βR,根据V的定义有v1+x0C,v2+x0C。容易看出
αv1+βv2+x0=α(v1+x0)+β(v2+x0)+(1αβ)x0,

因为C仿射且α+β+(1αβ)=1,可以得出αv1+βv2+x0C,即αv1+βv2V,也就是说集合V对加法和数乘是封闭的,因此V是一个子空间。
我们称集合CRn中点的所有仿射组合构成的集合为C仿射包。记为affC
affC={θ1x1++θkxk|θ1,,θkC,θ1++θk=1}.

仿射包是包含C的最小的仿射集合,也就是说,如果CS,且S仿射,则有affCS。该证明平凡。

几个例子:

1. 单点集的仿射包是它本身。
2. 包含两个点(两点不同)的集合的仿射包是穿过它们的直线。
3. 包含三个点(三点不共线)的集合的仿射包是穿过它们的平面。

凸集

如果集合C中任意两点间的线段仍然在C中,则称集合C为凸集。即对于x1,x2Cθ[0,1]都有

θx1+(1θ)x2C.

类似,我们称θ1x1++θkxkx1,,xk的凸组合,其中θ1++θk=1,且θi0,i=1,,k。一个凸集包含集合内所有点的凸组合。
我们称集合C中所有点的凸组合组成的集合为集合C的凸包,记为convC,
convC={θ1x1++θkxk|xiC,θi0,θ1++θk=1}.

凸包总是凸的,是包含C的最小凸集。

这里写图片描述

凸组合的概念可以推广到无穷级数、积分以及大多数形式的概率分布。比如,假设θ1,θ2,满足

θi0,i=1,2,,i=1θi=1,

x1,x2,CC为凸集。这时,如果级数ni=1θixi收敛,我们就有
i=1nθixiC.

更一般地,假设p:RnR为定义在C上的概率密度。那么,如果积分Cp(x)xdx存在,我们就有
Cp(x)xdxC

如果对于xCθ0都有θxC,我们就称集合C或者非负齐次。如果对于x1,x2Cθ1,θ20,都有

θ1x1+θ2x2C,

我们就称C凸锥
在二维平面上,具有此类形式的点构成一个以0为起点的扇形。

这里写图片描述
具有θ1x1++θkxk,θ1,,θk0形式的点称为x1,,xk锥组合。和仿射(凸)组合一样,锥组合也可以推广到无穷级数和积分。
集合C锥包C中所有元素的锥组合的集合,即

{θ1x1++θkxk|xiC,θi0,i=1,,k}

锥包是包含C的最小的凸锥。

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值