本文转载自:http://blog.csdn.net/uwell_peng/article/details/49992759
在很多算法中都会涉及到求向量欧式距离,例如机器学习中的KNN算法,就需要对由训练集A和测试集B中的向量组成的所有有序对,求出和的欧式距离。如果一个二重的嵌套循环来实现,在向量集很大时效率不高。
这里介绍如何将这一过程用矩阵运算实现。
假设有两个三维向量集,用矩阵表示:
要求A,B这两个矩阵中的元素两两之间的欧式距离。
先求出:
然后对和分别求其中每个向量的模平方,并扩展为2*3矩阵:
然后:
将上面这个矩阵一开方,就得到了A,B矩阵各个元素两两之间的欧式距离。
下面是Python实现:
import numpy
#输入的A,B为numpy.matrix格式
def EuclideanDistances(A, B):
BT = B.transpose()
vecProd = A * BT
SqA = A.getA()**2
sumSqA = numpy.matrix(numpy.sum(SqA, axis=1))
sumSqAEx = numpy.tile(sumSqA.transpose(), (1, vecProd.shape[1]))
SqB = B.getA()**2
sumSqB = numpy.sum(SqB, axis=1)
sumSqBEx = numpy.tile(sumSqB, (vecProd.shape[0], 1))
SqED = sumSqBEx + sumSqAEx - 2*vecProd
ED = (SqED.getA())**0.5
return numpy.matrix(ED)