求矩阵各个元素两两之间的欧式距离(python实现)

本文转载自:http://blog.csdn.net/uwell_peng/article/details/49992759


在很多算法中都会涉及到求向量欧式距离,例如机器学习中的KNN算法,就需要对由训练集A和测试集B中的向量组成的所有有序对,求出的欧式距离。如果一个二重的嵌套循环来实现,在向量集很大时效率不高。


这里介绍如何将这一过程用矩阵运算实现。


假设有两个三维向量集,用矩阵表示:


要求A,B这两个矩阵中的元素两两之间的欧式距离。


先求出



然后对分别求其中每个向量的模平方,并扩展为2*3矩阵:



然后:


将上面这个矩阵一开方,就得到了A,B矩阵各个元素两两之间的欧式距离。


下面是Python实现:

import numpy

#输入的A,B为numpy.matrix格式
def EuclideanDistances(A, B):
    BT = B.transpose()
    vecProd = A * BT
    SqA =  A.getA()**2
    sumSqA = numpy.matrix(numpy.sum(SqA, axis=1))
    sumSqAEx = numpy.tile(sumSqA.transpose(), (1, vecProd.shape[1]))    
    SqB = B.getA()**2
    sumSqB = numpy.sum(SqB, axis=1)
    sumSqBEx = numpy.tile(sumSqB, (vecProd.shape[0], 1))    
    SqED = sumSqBEx + sumSqAEx - 2*vecProd   
    ED = (SqED.getA())**0.5
    return numpy.matrix(ED)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值