Course 1 - 神经网络和深度学习 - 第二周作业

import numpy as np
import matplotlib.pyplot as plt
import h5py
from lr_utils import load_dataset#lr_utils和dataset在代码文件的同一级目录下
#把数据加载到主程序i
#np.squeeze的目的,压缩维度
#只有压缩后的值才能进行解码操作i
train_set_x_orig,train_set_y,test_set_x_orig,test_set_y,classes=load_dataset()
index=25
plt.imshow(train_set_x_orig[index])
plt.show()#用于显示图像
print("y="+str(train_set_y[:,index])+",it's a "+classes[np.squeeze(train_set_y[:,index])].decode("utf-8")
      +"'picture")
m_train=train_set_y.shape[1]#训练集里图片的数量(shape[1]为列的总和)
m_test=test_set_y.shape[1]#测试集里图片的数量
num_px=train_set_x_orig.shape[1]#训练,测试集里图片的宽度和高度
#注:train_set_x_orig 是一个维度为(m_​​train,num_px,num_px,3)的数组
print ("训练集的数量: m_train = " + str(m_train))
print ("测试集的数量 : m_test = " + str(m_test))
print ("每张图片的宽/高 : num_px = " + str(num_px))
print ("每张图片的大小 : (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("训练集_图片的维数 : " + str(train_set_x_orig.shape))
print ("训练集_标签的维数 : " + str(train_set_y.shape))
print ("测试集_图片的维数: " + str(test_set_x_orig.shape))
print ("测试集_标签的维数: " + str(test_set_y.shape))
#把维度为(64,64,3)的数组构造成为(64,64,3)的numpy数组重新构造为(64x64x3,1)的数组
#将训练集的维度降低并转置
train_set_x_flatten=train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
#将测试集的维度降低并转置
test_set_x_flatten=test_set_x_orig.reshape(test_set_x_orig.shape[0],-1).T
print ("训练集降维最后的维度: " + str(train_set_x_flatten.shape))
print ("训练集_标签的维数 : " + str(train_set_y.shape))
print ("测试集降维之后的维度: " + str(test_set_x_flatten.shape))
print ("测试集_标签的维数 : " + str(test_set_y.shape))
#对数据进行预处理,225为像素最大值
train_set_x=train_set_x_flatten/225
test_set_x=test_set_x_flatten/225
#构建sigmoid函数
def sigmoid(z):
    '''
    参数:z:任何大小的标量或者数组
    '''
    s=1/(1+np.exp(-z))
    return s
def initial_with_zeros(dim):
    '''此函数为建立一个维度为(dim,1)的0向量,并将b初始化为0
    参数:dim,w的大小
    返回:w:维度为(dim,1)的初始化向量
    b:初始化的标量(对应于偏差)'''
    w=np.zeros(shape=(dim,1))
    b=0
    #使用断言来保证我的数据是正确的
    assert(w.shape==(dim,1))#w的维度是1
    assert(isinstance(b,float) or isinstance(b,int))#b的类型是float或int
    return(w,b)
def propagate(w, b, X, Y):
    """
    实现前向和后向传播的成本函数及其梯度。
    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 矩阵类型为(num_px * num_px * 3,训练数量)
        Y  - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据数量)

    返回:
        cost- 逻辑回归的负对数似然成本
        dw  - 相对于w的损失梯度,因此与w相同的形状
        db  - 相对于b的损失梯度,因此与b的形状相同
    """
    m = X.shape[1]

    #正向传播
    A = sigmoid(np.dot(w.T,X) + b) #计算激活值,请参考公式2。
    cost = (- 1 / m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A))) #计算成本,请参考公式3和4。

    #反向传播
    dw = (1 / m) * np.dot(X, (A - Y).T) #请参考视频中的偏导公式。
    db = (1 / m) * np.sum(A - Y) #请参考视频中的偏导公式。

    #使用断言确保我的数据是正确的
    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)
    assert(cost.shape == ())

    #创建一个字典,把dw和db保存起来。
    grads = {
                "dw": dw,
                "db": db
             }
    return (grads , cost)
#测试函数
w,b,X,Y=np.array([[1],[2]]),2,np.array([[1,2],[3,4]]),np.array([[1,0]])
grads,cost=propagate(w,b,X,Y)
print("dw="+str(grads["dw"]))
print("db"+str(grads["db"]))
print("cost="+str(cost))
#使用渐变下降更新参数
def optimizer(w,b,X,Y,num_iterations,learning_rate,print_cost=False):
    '''此函数通过梯度下降法优化w和b
    参数:
    w:权重,大小不等的数组(num_px*num_px*3,1)
    b:偏差,一个标量
    X-维度为(num_px*num_px*3,训练数据的数量)的数组。
    Y-真正的"标签"矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据的数量)
    num_iterations:优化循环的迭代次数
    learning_rate:梯度下降的学习率
    print_cost:每100步打印一次损失值
    返回:
    param:包含权重w和偏差的字典
    grads:包含权重和偏差相对于成本函数的梯度的字典
    成本:优化期间计算成本列表,将用于绘制学习曲线
    提示:我们需要写下两个步骤来遍历它们:
    1)用propagate()计算当前参数的成本和梯度
    2)使用w和b的梯度下降法则更新参数
    '''
    costs=[]
    for i in range(num_iterations):
        grads,cost=propagate(w,b,X,Y)
        dw=grads["dw"]
        db=grads["db"]
        w=w-learning_rate*dw
        b=b-learning_rate*db
        #记录成本
        if i%100 ==0:
            costs.append(cost)
        #打印成本数据
        if(print_cost) and (i%100==0):
            print("迭代的次数:%i,误差值:%f" %(i,cost))
    params={
        "w":w,
        "b":b
    }
    grads={
        "dw":dw,
        "db":db
    }
    return (params,grads,costs)
#测试optimize
w,b,X,Y=np.array([[1],[2]]),2,np.array([[1,2],[3,4]]),np.array([[1,0]])
params,grads,costs=optimizer(w,b,X,Y,num_iterations=100,learning_rate=0.009,print_cost=False)
print("w="+str(params["w"]))
print("b="+str(params["b"]))
print("dw="+str(grads["dw"]))
print("db="+str(grads["db"]))
'''optimize函数会输出已学习的w和b的值,我们可以使用w和b来预测数据集X的标签。
现在我们要实现预测函数predict()。计算预测有两个步骤:
计算  Y^=A=σ(wTX+b)Y^=A=σ(wTX+b)
将a的值变为0(如果激活值<= 0.5)或者为1(如果激活值> 0.5),
然后将预测值存储在向量Y_prediction中
'''
def predict(w,b,X):
    '''使用逻辑回归参数logistic(w,b)预测标签是0和1,
    参数:
    w:权重,大小不等的数组(num_px*num_px*3,1)
    b:偏差,一个标量
    X:维度为(num_px*num_px*3,训练数据的数量)的数据
    返回:
    Y_prediction 包含X中所包含所有图片的预测【0|1】的一个numpy数组(向量)
    '''
    m=X.shape[1]#图片的数量
    Y_prediction=np.zeros((1,m))
    w=w.reshape(X.shape[0],1)
    #预计测试猫在图片中出现的概率
    A=sigmoid(np.dot(w.T,X)+b)
    for i in range(A.shape[1]):
        #将概率a[0,i]转化为实际预测p[0,i]
        Y_prediction[0,i]=1 if A[0,i]>0.5 else 0
        #使用断言
        assert(Y_prediction.shape==(1,m))
        return Y_prediction
#测试
w,b,X,Y=np.array([[1],[2]]),2,np.array([[1,2],[3,4]]),np.array([[1,0]])
print("predictions="+str(predict(w,b,X)))
#整合到一个模型中再调用模型
def model(X_train , Y_train , X_test , Y_test , num_iterations = 2000 , learning_rate = 0.5 , print_cost = False):
    """
    通过调用之前实现的函数来构建逻辑回归模型

    参数:
        X_train  - numpy的数组,维度为(num_px * num_px * 3,m_train)的训练集
        Y_train  - numpy的数组,维度为(1,m_train)(矢量)的训练标签集
        X_test   - numpy的数组,维度为(num_px * num_px * 3,m_test)的测试集
        Y_test   - numpy的数组,维度为(1,m_test)的(向量)的测试标签集
        num_iterations  - 表示用于优化参数的迭代次数的超参数
        learning_rate  - 表示optimize()更新规则中使用的学习速率的超参数
        print_cost  - 设置为true以每100次迭代打印成本

    返回:
        d  - 包含有关模型信息的字典。
    """
    w , b = initial_with_zeros(X_train.shape[0])

    parameters , grads , costs = optimizer(w , b , X_train , Y_train,num_iterations , learning_rate , print_cost)

    #从字典“参数”中检索参数w和b
    w , b = parameters["w"] , parameters["b"]

    #预测测试/训练集的例子
    Y_prediction_test = predict(w , b, X_test)
    Y_prediction_train = predict(w , b, X_train)

    #打印训练后的准确性
    print("训练集准确性:"  , format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100) ,"%")
    print("测试集准确性:"  , format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100) ,"%")

    d = {
            "costs" : costs,
            "Y_prediction_test" : Y_prediction_test,
            "Y_prediciton_train" : Y_prediction_train,
            "w" : w,
            "b" : b,
            "learning_rate" : learning_rate,
            "num_iterations" : num_iterations }
    return d
#测试模型
d=model(train_set_x,train_set_y,test_set_x,test_set_y,num_iterations=2000,learning_rate=0.005,print_cost=True)
#绘制图
costs=np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations(per hundreds)')
plt.title("Learning rate="+str(d["learning_rate"]))
plt.show()
learning_rates=[0.01,0.001,0.0001]
models={}
for i in learning_rates:
    print("learning rate is:"+str(i))
    models[str(i)]=model(train_set_x,train_set_y,test_set_x,test_set_y,num_iterations=1500,learning_rate=i,
                         print_cost=False)
    print("\n"+"-----------------------------------------------")
for i in learning_rates:
    plt.plot(np.squeeze(models[str(i)]['costs']),label=str(models[str(i)]["learning_rate"]))
plt.ylabel('cost')
plt.xlabel('iterations')
legend=plt.legend(loc='upper center',shadow=True)
frame=legend.get_frame()
frame.set_facecolor('0.90')
plt.show()

 

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值