Course1-第四周作业

import numpy as np
import h5py
import matplotlib.pyplot as plt
import testCases
from dnn_utils import sigmoid,sigmoid_backward,relu,relu_backward
import lr_utils
np.random.seed(1)
#初始化参数
#对于两层的网络结构而言,模型结构是线性->Relu->线性->sigmoid
def initialize_parameters(n_x,n_h,n_y):
    '''此函数是为了初始化两层网络参数而使用的函数
    参数:
    n_x:输入层结点数量
    n_h:隐藏层结点数量
    n_y:输出层结点数量
    返回:
    parameters:包含参数的python字典:
    W1:权重矩阵,维度为(n_h,,n_x)
    b1:偏向量,维度为(n_h,1)
    W2:权重矩阵,维度为(n_y,n_h)
    b2:偏向量,维度为(n_y,1)'''
    W1=np.random.rand(n_h,n_x)*0.01
    b1=np.zeros((n_h,1))
    W2=np.random.rand(n_y,n_h)*0.01
    b2=np.zeros((n_y,1))
    #使用断言保证我的数据格式是正确的
    assert(W1.shape==(n_h,n_x))
    assert(b1.shape==(n_h,1))
    assert(W2.shape==(n_y,n_h))
    assert(b2.shape==(n_y,1))
    parameters={
        "W1":W1,
        "b1":b1,
        "W2":W2,
        "b2":b2
    }
    return parameters
#测试初始化函数
print("测试initialize_parameters")
parameters=initialize_parameters(3,2,1)
print('W1='+str(parameters['W1']))
print('b1='+str(parameters['b1']))
print('W2='+str(parameters['W2']))
print('b2='+str(parameters['b2']))
#初始化一个L层的神经网络
def initialize_parameters_deep(layers_dims):
    '''此函数是为了初始化多层网络参数而使用的函数
    参数:
    layers_dims:包含我们网络中每个图层的节点数量的列表
    返回:
    parameters:包含参数"W1","b1","W2"..."WL","bL"的字典
    W1:权重矩阵,维度为(layers_dims[l],layers_dims[l-1])
    b1:偏向量,维度为(layers_dims[l],1)'''
    np.random.seed(3)
    parameters={}
    L=len(layers_dims)
    for l in range(1,L):
        parameters['W'+str(l)]=np.random.randn(layers_dims[l],layers_dims[l-1])/np.sqrt(layers_dims[l-1])
        parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))
        #确保格式是正确的
        assert(parameters["W"+str(l)].shape==(layers_dims[l],layers_dims[l-1]))
        assert(parameters["b"+str(l)].shape==(layers_dims[l],1))
    return parameters
#测试initialize_parameters_deep
print("测试initialize_parameters_deep")
layers_dims=[5,4,3]
parameters=initialize_parameters_deep(layers_dims)
print("W1="+str(parameters["W1"]))
print("b1="+str(parameters["b1"]))
print("W2="+str(parameters["W2"]))
print("b2="+str(parameters["b2"]))
#向前传播函数
def linear_forward(A,W,b):
    """
    实现前向传播的线性部分。

    参数:
        A - 来自上一层(或输入数据)的激活,维度为(上一层的节点数量,示例的数量)
        W - 权重矩阵,numpy数组,维度为(当前图层的节点数量,前一图层的节点数量)
        b - 偏向量,numpy向量,维度为(当前图层节点数量,1)

    返回:
         Z - 激活功能的输入,也称为预激活参数
         cache - 一个包含“A”,“W”和“b”的字典,存储这些变量以有效地计算后向传递
    """
    Z = np.dot(W,A) + b
    assert(Z.shape == (W.shape[0],A.shape[1]))
    cache = (A,W,b)
    return Z,cache
#测试linear_forward
print("测试linear_forward")
A,W,b=testCases.linear_forward_test_case()
Z,linear_cache=linear_forward(A,W,b)
print("Z="+str(Z))
#线性激活部分
def linear_activation_forward(A_prev,W,b,activation):
    '''实现linear-activation这一层的向前传播
    参数:
    A_prev - 来自上一层(或输入数据)的激活,维度为(上一层的节点数量,示例的数量)
        W - 权重矩阵,numpy数组,维度为(当前图层的节点数量,前一层的大小)
        b - 偏向量,numpy向量,维度为(当前图层节点数量,1)
        activation-选择在此层中的使用的激活函数名,字符串类型,【"sigmoid"|"relu"】
    返回:
         A- 激活函数的输出,也成为激活后的值
         cache - 一个包含“linear_cache”,“activation_cache”的字典,我们需要存储它以有效地计算向后传递
    '''
    if activation=='sigmoid':
        Z,linear_cache=linear_forward(A_prev,W,b)
        A,activation_cache=sigmoid(Z)
    elif activation=='relu':
        Z,linear_cache=linear_forward(A_prev,W,b)
        A,activation_cache=relu(Z)
    assert(A.shape==(W.shape[0],A_prev.shape[1]))
    cache=(linear_cache,activation_cache)
    return A,cache
#测试linear_activation_forward
print("测试linear_activation_forward")
A,W,b=testCases.linear_forward_test_case()
Z,linear_cache=linear_forward(A,W,b)
print("Z="+str(Z))
#多层模型的向前传播计算模型如下
def L_model_forward(X,parameters):
    '''实现[LINEAR-> RELU] *(L-1) - > LINEAR-> SIGMOID
    计算前向传播,也就是多层网络的前向传播,为后面每一层都执行LINEAR和ACTIVATION
参数:
    X-数据,numpy数组,维度为(输入节点的数量,示例数
    parameters-initialize_parameters_deep()的输出
返回:
    AL-最后的激活值
    cache-包含以下内容的缓存列表:
        linear_relu_forward()的每个cache(有L-1个,索引从0到L-2)
        linear_sigmoid_forward()的cache(只有一个,索引为L-1)
    '''
    caches=[]
    A=X
    L=len(parameters)//2
    for l in range(1,L):
        A_prev=A
        A,cache=linear_activation_forward(A_prev,parameters['W'+str(l)],parameters['b'
                                                                +str(l)],"relu")
        caches.append(cache)
    AL,cache=linear_activation_forward(A,parameters['W'+str(L)],parameters['b'+str(L)],"sigmoid")
    caches.append(cache)
    assert(AL.shape==(1,X.shape[1]))
    return AL,caches
#测试L_model_forward
print("测试l_model_forward")
X,parameters=testCases.L_model_forward_test_case()
AL,caches=L_model_forward(X,parameters)
print("AL="+str(AL))
print("caches的长度="+str(len(caches)))
#计算成本
def compute_cost(AL,Y):
    """
        实施等式(4)定义的成本函数。
        参数:
            AL - 与标签预测相对应的概率向量,维度为(1,示例数量)
            Y - 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)
        返回:
            cost - 交叉熵成本
        """
    m=Y.shape[1]
    cost=-np.sum(np.multiply(np.log(AL),Y)+np.multiply(np.log(1-AL),1-Y))/m
    cost=np.squeeze(cost)
    assert(cost.shape==())
    return cost
#测试compute_cost
print("测试compute_cost")
Y,AL=testCases.compute_cost_test_case()
print("cost="+str(compute_cost(AL,Y)))
#实现后向传播的线性部分
def linear_backward(dZ,cache):
    '''为单层实现反向传播的线性部分(第L层)
参数:
    dZ-相对于线性输出的成本梯度
    cache-来自当前层向前传播的值的元组(A_prev,W,b)
返回:
    dA_prev-相对于激活(前一层l-1)的成本梯度,与A_prev维度相同
    dW-相对于W(当前层l)的成本梯度,与W的维度相同
    db-相对于b(当前层)的成本梯度,与B维度相同'''
    A_prev,W,b=cache
    m=A_prev.shape[1]
    dW=np.dot(dZ,A_prev.T)/m
    db=np.sum(dZ,axis=1,keepdims=True)/m
    dA_prev=np.dot(W.T,dZ)
    assert(dA_prev.shape==A_prev.shape)
    assert(dW.shape==W.shape)
    assert(db.shape==b.shape)
    return dA_prev,dW,db
#测试linear_backward
print("测试linear_backward")
dZ,linear_cache=testCases.linear_backward_test_case()
dA_prev,dW,db=linear_backward(dZ,linear_cache)
print("dA_prev="+str(dA_prev))
print("dW="+str(dW))
print("db="+str(db))
#实现后向线性激活
def linear_activation_backward(dA,cache,activation="relu"):
    '''实现linear-activation层的后向传播
参数:
    dA-当前层l的激活后的梯度值
    cache - 我们存储的用于有效计算反向传播的值的元组(值为linear_cache,activation_cache)
         activation - 要在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
    返回:
         dA_prev - 相对于激活(前一层l-1)的成本梯度值,与A_prev维度相同
         dW - 相对于W(当前层l)的成本梯度值,与W的维度相同
         db - 相对于b(当前层l)的成本梯度值,与b的维度相同
    '''
    linear_cache,activation_cache=cache
    if activation=="relu":
        dZ=relu_backward(dA,activation_cache)
        dA_prev,dW,db=linear_backward(dZ,linear_cache)
    elif activation=="sigmoid":
        dZ=sigmoid_backward(dA,activation_cache)
        dA_prev,dW,db=linear_backward(dZ,linear_cache)
    return dA_prev,dW,db
#测试"linear_activation_backward"
print("测试linear_activation_backward")
AL,linear_activation_cache=testCases.linear_activation_backward_test_case()
dA_prev,dW,db=linear_activation_backward(AL,linear_activation_cache,activation="sigmoid")
print("sigmoid:")
print("dA_prev="+str(dA_prev))
print("dW="+str(dW))
print("db="+str(db)+"\n")
AL,linear_activation_cache=testCases.linear_activation_backward_test_case()
dA_prev,dW,db=linear_activation_backward(AL,linear_activation_cache,activation="relu")
print("relu:")
print("dA_prev="+str(dA_prev))
print("dW="+str(dW))
print("db="+str(db))
#dAL=-(np.divide(Y,AL)-np.divide(1-Y,1-AL))
#构建多层模型向后传播函数
def L_model_backward(AL,Y,caches):
    """对[LINEAR-> RELU] *(L-1) - > LINEAR - > SIGMOID组执行反向传播,就是多层网络的向后传播
    参数:
    AL-概率向量,正向传播的输出(L_model_forward())
    Y-标签向量,维度为1
    caches-包含以下内容的cache列表:
        linear_activation_forward("relu")的cache,不包含输出层
        linear_activation_forward("sigmoid")的cache
    返回:
        grads-具有梯度值得字典
        grads["dA"+str(l)]=...
        grads["dA"+str(l)]=...
        grads["db"+str(l)]=...
    """
    grads={}
    L=len(caches)
    m=AL.shape[1]
    Y=Y.reshape(AL.shape)
    dAL=-(np.divide(Y,AL)-np.divide(1-Y,1-AL))
    current_cache=caches[L-1]
    grads["dA"+str(L)],grads["dW"+str(L)],grads["db"+str(L)]=linear_activation_backward(dAL,
                current_cache,"sigmoid")
    for l in reversed(range(L-1)):
        current_cache=caches[l]
        dA_prev_temp,dW_temp,db_temp=linear_activation_backward(grads["dA"+str(l+2)],
                                                                current_cache,"relu")
        grads["dA"+str(l+1)]=dA_prev_temp
        grads["dW"+str(l+1)]=dW_temp
        grads["db"+str(l+1)]=db_temp
    return grads
#测试L_model_backward
print("测试L_model_backward")
AL,Y_assess,caches=testCases.L_model_backward_test_case()
grads=L_model_backward(AL,Y_assess,caches)
print("dW1="+str(grads["dW1"]))
print("db1="+str(grads["db1"]))
print("dA1="+str(grads["dA1"]))
#更新参数
def update_parameters(parameters,grads,learning_rate):
    """使用梯度下降更新参数
    参数:
    parameters:包含参数的字典
    grads:包含梯度值得字典,是L_model_backward的输出
    返回:
    parameters:包含更新参数的字典
        参数["W"+str(l)]=...
        参数["W"+str(l)]=...
        """
    L=len(parameters)//2 #整除
    for l in range(L):
        parameters['W'+str(l+1)]=parameters["W"+str(l+1)]-learning_rate*grads["dW"+str(l+1)]
        parameters["b"+str(l+1)]=parameters["b"+str(l+1)]-learning_rate*grads["db"+str(l+1)]
        return parameters
#测试update_parameters
print("测试update_parameters")
parameters,grads=testCases.update_parameters_test_case()
parameters=update_parameters(parameters,grads,0.1)
print("W1="+str(parameters["W1"]))
print("b1="+str(parameters["b1"]))
print("W2="+str(parameters["W2"]))
print("b2="+str(parameters["b2"]))
#搭建两层神经网络
def two_layer_model(X,Y,layers_dims,learning_rate=0.0075,num_iterations=3000,
                    print_cost=False,isPlot=True):
    '''实现一个两层神经网络,【linear->relu】->【linear->sigmoid】
参数:
    X-输入的数据,维度为(n_x,例子数)
    Y-标签,向量,0:非猫;1:猫,维度为(1,数量)
    layers-dims:层数的向量,维度为(n_y,n_h,n_y)
    learning_rate-学习率
    num_iterations-迭代的次数
    print_cost-是否打印成本值,每100次打印一次
    isPlot-是否绘出误差值的图谱
返回:
    parameters-一个包含W1,b1,W2,b2的字典变量
    '''
    np.random.seed(1)
    grads={}
    costs=[]
    (n_x,n_h,n_y)=layers_dims
    """
    初始化参数
    """
    parameters=initialize_parameters(n_x,n_h,n_y)
    W1=parameters["W1"]
    b1=parameters["b1"]
    W2=parameters["W2"]
    b2=parameters["b2"]
    """开始进行迭代"""
    for i in range(0,num_iterations):
        #向前传播
        A1,cache1=linear_activation_forward(X,W1,b1,"relu")
        A2,cache2=linear_activation_forward(A1,W2,b2,"sigmoid")
        #计算成本
        cost=compute_cost(A2,Y)
#向后传播
    ##初始化向后传播
        dA2=-(np.divide(Y,A2)-np.divide(1-Y,1-A2))
        ##向后传播,
        dA1,dW2,db2=linear_activation_backward(dA2,cache2,"sigmoid")
        dA0,dW1,db1=linear_activation_backward(dA1,cache1,"relu")
        ##向后传播完成后的数据保存到grads
        grads["dW1"]=dW1
        grads["db1"]=db1
        grads["dW2"]=dW2
        grads["db2"]=db2
        #更新参数
        parameters=update_parameters(parameters,grads,learning_rate)
        W1=parameters["W1"]
        b1=parameters["b1"]
        W2=parameters["W2"]
        b2=parameters["b2"]
        #打印成本值,如果print_cost=False则忽略
        if i%100 ==0:
            #记录成本
            costs.append(cost)
            #是否打印成本值
            if print_cost:
                print("第",i,"次迭代,成本值为:",np.squeeze(cost))
    #迭代完成,根据条件绘制图
    if isPlot:
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations(per tens)')
        plt.title("Learning rate="+str(learning_rate))
        plt.show()
    #返回parameters
    return parameters
#加载数据集
train_set_x_orig,train_set_y,test_set_x_orig,test_set_y,classes=lr_utils.load_dataset()
train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
train_x = train_x_flatten / 255
train_y = train_set_y
test_x = test_x_flatten / 255
test_y = test_set_y
#数据集加载完成,开始训练
n_x=12288
n_h=7
n_y=1
layers_dims=two_layer_model(train_x,train_set_y,layers_dims=(n_x,n_h,n_y),
                            num_iterations=2500,print_cost=True,isPlot=True)
#迭代完成之后进行预测
def predict(X,y,parameters):
    '''该函数用于预测L层神经网络,当然也包含两层
参数:
    X-测试集
    y-标签
    parameters-训练模型的参数
返回:
    p-给定数据集X的预测'''
    m=X.shape[1]
    n=len(parameters)//2 #神经网络层数
    p=np.zeros((1,m))
    #根据参数向前传播
    probas,caches=L_model_forward(X,parameters)
    for i in range(0,probas.shape[1]):
        if probas[0,i]>0.5:
            p[0,i]=1
        else:
            p[0,i]=0
    print("准确度为:"+str(float(np.sum((p==y))/m)))
    return p
#搭建多层神经网络
def L_layer_model(X,Y,layers_dims,learning_rate=0.0075,num_iterations=3000,
                  print_cost=False,isPlot=True):
    """实现一个L层神经网络
    [linear->relu]*(L-1)->linear->sigmoid
参数:
    X-输入的数据,维度为(n_x,例子数)
    Y-标签,向量,0:非猫,1:猫,维度为(1,数量)
    layers_dims:层数的向量,维度为(n_y,n_h...n_h,n_y)
    learning_rate-学习率
    num_iterations-迭代的次数
    print_cost-是否打印成本值,每100次打印一次
    isPlot-是否绘制出误差值的图谱
返回:
    parameters-模型学习的参数,然后他们可以用来预测"""
    np.random.seed(1)
    costs=[]
    parameters=initialize_parameters_deep(layers_dims)
    for i in range(0,num_iterations):
        AL,caches=L_model_forward(X,parameters)
        cost=compute_cost(AL,Y)
        grads=L_model_backward(AL,Y,caches)
        parameters=update_parameters(parameters,grads,learning_rate)
        #打印成本值,如果print_cost=False则忽略
        if i%100==0:
            #记录成本
            costs.append(cost)
            #是否打印成本值
            if print_cost:
                print("第:",i,"次迭代,成本值为:",np.squeeze(cost))
    #迭代完成
    if isPlot:
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations(per tens)')
        plt.title("learning rate="+str(learning_rate))
        plt.show()
    return parameters
#加载图像数据集
train_set_x_orig,train_set_y,test_set_x_orrig,test_set_y,classes=lr_utils.load_dataset()
train_x_flatten=train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
test_x_flatten=test_set_x_orig.reshape(test_set_x_orig.shape[0],-1).T
train_x=train_x_flatten/225
train_y=train_set_y
test_x=test_x_flatten/225
test_y=test_set_y
layers_dims=[12288,20,7,5,1]
parameters=L_layer_model(train_x,train_y,layers_dims,num_iterations=2500,print_cost=True,isPlot=True)
pred_test=predict(test_x,test_y,parameters)
#分析哪些东西被标记错了
def print_mislabeles_images(classes,X,y,p):
    """绘制预测和实际不同的图像
    X-数据集
    y-实际的标签
    p-预测"""
    a=p+y
    mislabeled_indices=np.asarray(np.where(a==1))
    plt.rcParams['figure.figsize']=(40.0,40.0) #set default size plots
    num_images=len(mislabeled_indices[0])
    for i in range(num_images):
        index=mislabeled_indices[1][i]
        plt.subplot(2,num_images,i+1)
        plt.imshow(X[:,index].reshape(64,64,3),interpolation='nearest')
        plt.axis('off')
        plt.title("Prediction:"+classes[int(p[0,index])].decode("utf-8")+"\n Class:"
                  +classes[y[0,index]].decode("utf-8"))
        plt.show()
print_mislabeles_images(classes,test_x,test_y,pred_test)

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值