给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。
提示:
2 <= cost.length <= 1000
0 <= cost[i] <= 999
楼顶的下标是cost的长度;
从下标0或者1开始,所以楼顶如果是0或者1的话,花费是0;
记录到楼顶的花费可以转化为:
- 到n-1阶楼梯+n-1阶楼梯的花费到达楼顶
- 到n-2阶楼梯+n-2阶楼梯的花费到达楼顶
class Solution {
public int minCostClimbingStairs(int[] cost) {
int top = cost.length;//楼顶
if(top==0 || top==1){
return 0;
}else{
int dp[] = new int[top+1];
dp[0] = 0;
dp[1]=0;
for(int i=2;i<=top;i++){
dp[i] = Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
}
return dp[top];
}
}
}