resnet论文阅读

本文深入探讨了残差网络(ResNet),一种在图像识别任务中广泛应用的网络架构。ResNet通过学习残差函数解决了深度网络中的梯度消失和退化问题。实验显示,ResNet在ImageNet分类、CIFAR-10和PASCAL及MS COCO数据集上的表现优于浅层网络和其他模型,尤其是在目标检测任务上取得了显著的改进。
摘要由CSDN通过智能技术生成

论文阅读:Deep Residual Learning for Image Recognition

引言:

​ 残差网络是如今运用极为广泛的一种网络,它学习残差函数,而非学习原始函数。实验表明残差函数更容易优化,并且可以通过增加深度来提高准确度。它在ILSVRC2015分类任务中获得了第一名,在COCO目标检测数据集上获得了28%的相对改进,赢得了ImageNet检测、ImageNet本地化、可可检测和可可分割等任务的第1个位置。

论文地址:https://arxiv.org/abs/1512.03385

Code:https://github.com/KaimingHe/deep-residual-networks

​ 该论文介绍了残差网络,主要分为3大块:

​ 一、残差块的介绍

​ 二、残差块的原理

​ 三、实验结果

一、残差块介绍:

因为深度在很多视觉识别任务中具有非常核心的重要性

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值