resnet论文阅读

本文深入探讨了残差网络(ResNet),一种在图像识别任务中广泛应用的网络架构。ResNet通过学习残差函数解决了深度网络中的梯度消失和退化问题。实验显示,ResNet在ImageNet分类、CIFAR-10和PASCAL及MS COCO数据集上的表现优于浅层网络和其他模型,尤其是在目标检测任务上取得了显著的改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文阅读:Deep Residual Learning for Image Recognition

引言:

​ 残差网络是如今运用极为广泛的一种网络,它学习残差函数,而非学习原始函数。实验表明残差函数更容易优化,并且可以通过增加深度来提高准确度。它在ILSVRC2015分类任务中获得了第一名,在COCO目标检测数据集上获得了28%的相对改进,赢得了ImageNet检测、ImageNet本地化、可可检测和可可分割等任务的第1个位置。

论文地址:https://arxiv.org/abs/1512.03385

Code:https://github.com/KaimingHe/deep-residual-networks

​ 该论文介绍了残差网络,主要分为3大块:

​ 一、残差块的介绍

​ 二、残差块的原理

​ 三、实验结果

一、残差块介绍:

因为深度在很多视觉识别任务中具有非常核心的重要性

ResNet 的论文全称为《Deep Residual Learning for Image Recognition》,由 He, Kaiming 等人在 2015 年发表,并在同年获得了 ICCV 的最佳论文奖。这篇论文提出了残差网络(ResNet),解决了深层神经网络中的梯度消失退化问题,极大地推动了深度学习的发展。 可以通过以下链接下载 ResNet 原始论文的 PDF 文件: - 官方链接:[Deep Residual Learning for Image Recognition](https://arxiv.org/pdf/1512.03385.pdf)[^2] 以下是关于 ResNet 的一些核心概念技术细节: ### 关于 ResNet 的背景与意义 ResNet 提出了通过引入 **残差连接** 来解决深度神经网络训练过程中遇到的退化问题。随着网络层数增加,模型性能反而下降的现象被称为“退化问题”。ResNet 利用恒等映射的思想,在网络中加入跳跃连接,使得优化目标变为拟合残差函数 \( F(x) = H(x) - x \),从而更容易训练非常深的网络[^1]。 ### 残差网络的核心公式 假设卷积栈的输入为 \( x \),输出为 \( H(x) \),则残差网络的正向传播公式可表示为: \[ y = F(x) + x \] 其中,\( F(x) \) 表示卷积操作的结果,而 \( x \) 是原始输入特征图。这种设计允许梯度直接回传至更早的层,缓解了梯度消失问题[^4]。 ```python import torch.nn as nn class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out ``` 上述代码展示了 ResNet 中的一个基本模块 `BasicBlock`,它实现了残差连接的功能。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值