1. 引言
在本文中,我们研究了用于图像字幕的具有网格特征的局部视觉建模,这对于生成准确和详细的字幕至关重要。为了实现这一目标,我们提出了一种具有两种新颖设计的局部敏感变换网络(LSTNet),即局部敏感注意力(LSA)和局部敏感融合(LSF)。 LSA 通过对每个网格与其邻居之间的关系进行建模来部署 Transformer 中的层内交互。它降低了字幕过程中局部物体识别的难度。 LSF用于层间信息融合,聚合不同编码器层的信息以实现跨层语义互补。通过这两种新颖的设计,所提出的 LSTNet 可以对网格特征的局部视觉信息进行建模,以提高字幕质量。为了验证 LSTNet,我们在竞争性的 MS-COCO 基准上进行了广泛的实验。实验结果表明,LSTNet 不仅能够进行本地视觉建模,而且在离线和在线测试中都优于一系列最先进的字幕模型,即分别为 134.8 CIDEr 和 136.3 CIDEr。此外,LSTNet 的泛化性也在 Flickr8k 和 Flickr30k 数据集上得到了验证。源代码可在 GitHub 上获取: