自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 收藏
  • 关注

原创 目标检测的终极武器·Efficentdet的进阶之路--从Modile Net 到 Efficentnet 并附源码

Efficentdet的进阶之路论文:https://arxiv.org/pdf/1911.09070.pdftf源码:https://github.com/google/automl/tree/master/efficientdetpytorch源码:https://github.com/JianqiuChen/EfficientDet.PytorchMobileNet三部曲【MobileNet V1】把普通的卷积变成深度卷积(depthwise convolution)和点对卷积(poin

2020-05-29 18:09:02 1191

原创 【YOLO V4】 速度和准确度更优的目标检测并附源码

从图中可以看到,最新的YOLO V4 版本的速度比EfficientDet 快了 2倍在大致相同的AP 表现下。相比之前的YOLO V3 AP和FPS 分别提升了 10% 和 12%。摘要:据说有许多功能可以提高卷积神经网络(CNN)的准确性。需要在大型数据集上对这些特征的组合进行实际测试,并对结果进行理论证明。某些功能仅在某些模型上运行,并且仅在某些问题上运行,或者仅在小型数据集上运行;而...

2020-04-24 15:43:39 10198

原创 语义分割看这一篇就够了!

语义分割技术综述本文就Image Segmentation Using Deep Learning: A Survey第三章的模型进行了分析和介绍,第一第二章的基础指示可以看原文进行学习,相关知识有很多这里就不班门弄斧了。最好是一边读原文一边看本文效果更佳原文连接能力有限,水平一般,抱着学习的态度分享此文,有不准确的地方还请各位大佬斧正!3.1 全连接网络关于FCN的资料有很多这里就不...

2020-04-07 10:40:08 43425 7

转载 6D位姿估计 按年份会议论文及代码汇总[转载]

按会议和年份总结6D位姿估计paper

2022-09-23 16:56:30 685

原创 python CV2 int8 和 float转换

python CV2 int8 和 float转换在使用时有些像素点表达是使用的float,有些是int8,试过x255的方法会导致输出图像出现差异,不能直接转换,查阅很多资料后总结该方法可以有效的修改类型# Float to int8image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR, cv2.CV_8UC3)##int8 to floatimage = cv2.cvtColor(image, cv2.COLOR_RGB2BGR, cv2.CV_32

2022-03-03 09:48:57 7170

原创 nvidia-smi 删除所有python程序

删除所有nvidia-smi中显示的 带有python的程序nvidia-smi | grep 'python' | awk '{ print $5 }' | sudo xargs -n1 kill -9

2021-12-13 19:13:11 2328

原创 ubuntu 1804 2004 server 安装nvidia驱动

屏蔽开源驱动nouveau 下面命令sudo 开始 安装过程会询问是否屏蔽,手动屏蔽也有多种操作方式,终端输入sudo gedit /etc/modprobe.d/blacklist.conf加参数到最底下回车另起一行内容为blacklist nouveauoptions nouveau modeset=0保存再终端更新内核命令 终端输入sudo update-initramfs -usudo apt updatesudo apt install gcc g++ make然后好了以后重启电

2021-12-01 13:01:01 1417

原创 VOT测试自己的数据集

导入环境:# 导入docker镜像docker load --input vot_toolkit.tar# 根据docker镜像建立容器 sudo docker run --gpus all --shm-size=60g -it -v /你的本地项目路径:/test -w /test vot_toolkit生成配置文件在该目录下生成三个文件trackers.ini:[TRACKALL] # <tracker-name>label = TRACKALLprot..

2021-10-25 14:24:15 1075 3

原创 CVPR2020ORAL 长时目标跟踪LTMU

Motivation:设计了一个由多层lstm组成的meta-updater,用来控制模板更新从而实现online-updated tracker。paper:code:meta-updaterxt∈Rd×1x_t ∈ R^{d\times 1}xt​∈Rd×1 is a column vector concentrated by stC,stA,vtRs^C_t , s^A_t , v^R_tstC​,stA​,vtR​ , and btb_tbt​.Appearance Cue: s.

2021-09-25 14:35:14 597

原创 python代码分析目标跟踪中的卡尔曼滤波

1. 什么是卡尔曼滤波卡尔曼滤波(Kalman filter)是一种高效的自回归滤波器,它能在存在诸多不确定性情况的组合信息中估计动态系统的状态,是一种强大的、通用性极强的工具。它的提出者,鲁道夫.E.卡尔曼,在一次访问NASA埃姆斯研究中心时,发现这种方法能帮助解决阿波罗计划的轨道预测问题,后来NASA在阿波罗飞船的导航系统中确实也用到了这个滤波器。最终,飞船正确驶向月球,完成了人类历史上的第一次登月。– 引用自以下两个链接(对应中英文链接),第一次了解卡尔曼滤波的同学强烈推荐阅读以下两篇文章。H.

2021-09-16 14:58:45 2710 4

原创 Transformer for visual tracking目标跟踪论文总结 -- CVPR 2021 ORAL

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking这一篇是中国科学技术大学 周文罡 老师团队的作品,2021 CVPR ORAL1. MotivationIn video object tracking, there exist rich temporal contexts among successive frames, which have been largely overlooke

2021-03-31 16:39:57 1755

原创 mmdetection安装 CUDA11.0+pytorch1.7.1+mmcv-full

安装Create a conda virtual environment and activate it.conda create -n open-mmlab python=3.7 -yconda activate open-mmlabInstall PyTorch and torchvision following the official instructions, e.g.,这里建议加上 -c 减少因安装源的问题导致的错误conda install pytorch cudato

2021-03-23 13:10:59 3898

原创 MobileNet系列 v1 v2 v3

MobileNet V1Depthwise Separable Convolution:深度分离卷积:它是将标准卷积拆分为了两个操作:深度卷积(depthwise convolution) 和 逐点卷积(pointwise convolution)深度卷积 上图b 对每个输入通道采用不同的卷积核,就是说一个卷积核对应一个输入通道 即深度级别卷积计算开支:DK⋅DK⋅M⋅DF⋅DFD_K \cdot D_K \cdot M \cdot D_F \cdot D_F DK​⋅DK​⋅M⋅DF​

2021-03-22 19:31:18 384

转载 (CVPR-2021)RepVGG:极简架构,SOTA性能,让VGG式模型再次伟大

转载自论文一作:https://zhuanlan.zhihu.com/p/344324470论文代码:https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py2020年B站年度弹幕是“爷青回”。一定有很多瞬间,让你感觉“爷的青春回来了”。在这个卷积网络各种超参精确到小数点后三位的时代,你是否还记得五六年前的田园时代,堆几个卷积层就能涨点的快乐?我们最近的工作RepVGG,用结构重参数化(structural re-parameterization)

2021-03-02 11:21:43 431

原创 目标检测-提升方案-目标框加权融合-Weighted Boxes Fusion笔记及源码

Weighted Boxes Fusion 是2019年cvpr的一篇文章,文章非常之短(只有三页不到),并且对bounding box 的融合又非常有效的方法。原文链接:https://arxiv.org/pdf/1910.13302.pdf源码https://github.com/ZFTurbo/Weighted-Boxes-Fusion下面是WBF的算法步骤:每个模型的每个预测框都添加到List B,并将此列表按置信度得分C降序排列建立空List L 和 F(用于融合的)循环遍历B,并在

2020-06-09 14:25:30 7029 11

原创 机器学习-深度学习-调参技巧【贝叶斯优化】

贝叶斯优化贝叶斯优化可以解决在调参时,参数组合的盲目搜索(gridsearch)可以快速,高效的找到相对最优的参数。Sequential model-based optimization (SMBO) 是贝叶斯优化的最简形式,其算法思路如下:主要的流程如下(引用自limoumou)流程和伪代码中关键内容讲解:PF-fitmodel:找到模型分布,如果已知,则可以根据经验选择最优的模型;如果未知,则可以采用基于高斯过程的核函数作为黑盒函数自己学习。高斯过程的内容可以参考高斯分布讲解这里大致

2020-06-09 09:49:56 2438

原创 【池化选择】全局最大池化和全局平均池化的实验分析

根据MIT的 Learning Deep Features for Discriminative Localization论文中的描述,在使用类响应图class activation mapping (CAM) 对比全局平均池化Global average pooling (GAP) vs 全局最大池化global max pooling (GMP):类响应图示例:...

2020-05-10 14:15:19 6572 1

原创 基于立体视觉SLAM系统的在线目标检测与定位【论文解析】

Online Object Detection and Localization on Stereo Visual SLAM System【Journal of Intelligent & Robotic Systems (2020) 98:377–386】摘要:为了在未知环境中导航,自主机器人必须能够在周围环境中绘制周围环境的地图 同时估算其位置。此问题称为SLAM。我们提出了用于立...

2020-05-06 10:22:24 1512

原创 optimized product quantiization笔记

论文链接:https://www.microsoft.com/en-us/research/wp-content/uploads/2013/06/cvpr13opq.pdf先说一下乘积量化product quantiization:积量化(PQ)是一种有效的矢量量化方法。乘积量化器可以以非常低的存储器/时间成本生成指数大的码本。 PQ的本质是将高维向量空间分解为子空间的笛卡尔乘积,然后分别量化...

2020-04-18 18:07:18 603

原创 深度学习细颗粒图像分析综述

深度学习细颗粒图像分析综述(图像识别)     计算机视觉(CV)是使用机器理解和分析图像的过程,这是人工智能的组成部分。在CV的各个研究领域中,细粒度图像分析(FGIA)是一个长期存在的基本问题,并且已在各种实际应用中无处不在。FGIA的任务旨在分析从属类别(例如,鸟类或汽车模型)中的视觉对象。细粒度性质导致的小类间差异和大的类内差异使其成为...

2020-04-12 18:52:34 3293

原创 Multi-Attention Multi-Class Constraint for Fine-grained Image Recognition(ECCV2018)

Multi-Attention Multi-Class Constraint for Fine-grained Image Recognition(ECCV2018)之前的笔记:https://blog.csdn.net/qq_32768091/article/details/84853545论文链接:https://arxiv.org/pdf/1806.05372.pdf主要讲的是:...

2020-04-12 14:18:58 259

原创 RACNN笔记

Recurrent attention convolutional neural network for fine-grained image recognition 中的RA-CNN算法不需要对数据做类似bounding box的标注就能取得和采用类似bounding box标注的算法效果。有多个结构相同参数不共享的子网络对应每个scale。每个子网络包含分类网络和APN网络。对两个网络进行教程...

2020-04-12 10:24:05 544

原创 RCNN,SSD, YOLO的优缺点比较及反思

RCNN,SSD, YOLO的优缺点比较及反思1. RCNNFast-RCNNFaster-RCNNFaster-RCNN 系列的反思2. YOLOYOLO V1YOLO V2YOLO V3YOLO系列的反思3. SSD1. RCNNrcnn对于原有的目标检测算法提升50% 在VGG-16网络模型下,voc2007数据集上准确率为66%,但是速度很慢,内存占用量大,主要原因为候选框由速度较慢的...

2020-01-17 15:36:49 41877

原创 花书-无约束优化

无约束优化机器学习的最普遍,最简单的优化问题1.梯度下降2.牛顿法机器学习的最普遍,最简单的优化问题x∗=min⁡xf(x),x∈Rn.x^* = \min{_x}f{(x)},x\in R^n.x∗=minx​f(x),x∈Rn.1.梯度下降梯度下降是一次收敛,梯度方向为下降最快方向,可能会震荡在极值点可以参考这个链接用python实现2.牛顿法牛顿法是二次收敛,收敛速度快,计...

2019-10-14 08:36:10 189

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除