1035. 不相交的线 392. 判断子序列 115. 不同的子序列

文章介绍了使用动态规划解决一系列问题的方法,包括最大公共子序列、优化空间复杂度后的实现,以及最大子序和问题,强调双指针在某些情况下的效率优势。此外,还讨论了不同的子序列问题,解释了如何计算不同子序列的数量,并展示了动态规划的状态转移方程。
摘要由CSDN通过智能技术生成

1035. 不相交的线

在这里插入图片描述
和最长公共子序列题目思路完全一致,相当于换了个问法,开始没反应过来。

class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int[][] dp = new int[nums1.length+1][nums2.length+1];
        int result = 0;
        for(int i = 1;i <= nums1.length;i++){
            for(int j = 1;j <= nums2.length;j++){
                if(nums1[i-1] == nums2[j-1]){
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }else{
                    dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
                }
                result = Math.max(result,dp[i][j]);
            }
        }
        return result;
    }
}

在这里插入图片描述
优化空间复杂度:

class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int[] dp = new int[nums2.length+1];
        int result = 0;
        for(int i = 1;i <= nums1.length;i++){
            int pre = dp[0];
            for(int j = 1;j <= nums2.length;j++){
                int cur = dp[j];
                if(nums1[i-1] == nums2[j-1]){
                    dp[j] = pre + 1;
                }else{
                    dp[j] = Math.max(dp[j],dp[j-1]);
                }
                result = Math.max(result,dp[j]);
                pre = cur;
            }
        }
        return result;
    }
}

在这里插入图片描述

53. 最大子序和

在这里插入图片描述
这题还得是双指针,动态规划效率太低了

class Solution {
    public boolean isSubsequence(String s, String t) {
        int[][] dp = new int[s.length()+1][t.length()+1];
        int res = 0;
        for(int i = 1;i <= s.length();i++){
            for(int j = 1;j <= t.length();j++){
                if(s.charAt(i-1) == t.charAt(j-1)){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }else{
                    dp[i][j] = dp[i][j-1];
                }
                res = Math.max(res,dp[i][j]);
            }
        }
        if(res == s.length()){
            return true;
        }
        return false;
    }
}

在这里插入图片描述

115. 不同的子序列

在这里插入图片描述
画图理解该题目
dp[i] [j] 表示以nums[i]为结尾的字符串有多少个以nums[j]为结尾的字符串子序列。
判断序列删除一个元素是否有子序列。
为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊?
例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。
当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。 所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]

class Solution {
    public int numDistinct(String s, String t) {
        int[][] dp = new int[t.length()+1][s.length()+1];
        for(int i = 0;i <= s.length();i++){
            dp[0][i] = 1;
        }
        for(int i = 1;i <= t.length();i++){
            for(int j = 1;j <= s.length();j++){
                if(s.charAt(j-1) == t.charAt(i-1)){
                    dp[i][j] = dp[i-1][j-1] + dp[i][j-1];
                }else{
                    dp[i][j] = dp[i][j-1];
                }
            }
        }
        return dp[t.length()][s.length()];
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

龙崎流河

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值