题目:openjudge 612
http://cqsyz.openjudge.cn/hanjai/9/
-
总时间限制:
- 1000ms 内存限制:
- 65536kB
-
描述
-
一幅如图2(a)所示的二进制图片常常会用一个二进制矩阵来表示。所谓二进制矩阵是指矩阵中的每一个数不是0就是1。图2(b)展示图2(a)用二进制矩阵表示的情况。
图2:(a)二进制图片(b)图片的矩阵表示(c)四分树划分(d)四分树表示
为了保存图2(b)这样的矩阵,经常使用四分树来完成。对于一个N * N的矩阵,N <= 512且N = 2^i(i为正整数),如果这个矩阵中的数不全一样,那么我们会把这个矩阵分成4个N/2 * N/2的矩阵,如图2(c)所示。之后,我们再对这4个N/2 * N/2的矩阵划分,同样地,如果里面的数不全一样则划分成N/4 * N/4的矩阵。图2(c)里面右边的两个N/2 * N/2的矩阵就被这样再度划分了。如此可以持续进行划分,直到里面的数全一样。图2(c)展示了完全划分完毕的样子。
我们一般都将二进制图片存成图2(d)这样的四分树的形式,这棵树是通过图2(c)里面的划分得到的。图2(d)里面的每一个结点都代表图2(c)里面的矩阵,而树的根结点代表整个大的矩阵。如果树中一个结点的值为1,则代表这个结点对应的矩阵需要划分成4个小矩阵。否则,这个结点将包含两个数。第一个数为0,表示不用再划分,第二个数为0或者1,表示整个矩阵都是这个值。整棵树可以用它的宽度优先遍历得到的结果来表示,如图2(d)中的树可以表示成(1)(0,0)(1)(0,1)(1)(0,0)(0,1)(1)(0,0)(0,0)(0,0)(0,1)(0,1)(0,0)(0,1)(0,0)(0,1)。删掉括号和逗号,我们可以得到一个更简短的纯二进制编码100101100011000000010100010001来编码这张图片,它的16进制形式为258C0511。
现在请你编写一个程序,求出给定图片的16进制形式的编码。
输入
-
第1行包含一个数k,1 <= k <= 100,表示数据的组数。
对于每一组数据,第1行包含一个数N表示图片的大小为N * N,其中N <= 512且N = 2^i(i为正整数)。
接下来跟着一个N * N的矩阵代表一张二进制图片。每两个0和1之间至少有一个空格。
输出
- 每张图片通过四分树得到的16进制编码。 样例输入
-
3 2 0 0 0 0 4 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 8 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 114 258C0511
#include <iostream>
#include <queue>
#include <cstring>
using namespace std;
int map[520][520];
bool check(int x,int y,int size){
for(int i=x;i<x+size;i++)
for(int j=y;j<y+size;j++)
if(map[i][j]!=map[x][y])
return false;
return true;
}
typedef struct node{
bool f;
int x;
node *c[2][2];
}node;
void extend(node* r,int x,int y,int size){
size/=2;
node *p;
for(int i=0;i<2;i++)
for(int j=0;j<2;j++){
if(check(x+i*size,y+j*size,size)){
p=new node;
p->f=true;
p->x=map[x+i*size][y+j*size];
memset(p->c,NULL,sizeof(p->c));
r->c[i][j]=p;
}else{
p=new node;
p->f=false;
p->x=1;
r->c[i][j]=p;
extend(p,x+i*size,y+j*size,size);
}
}
}
int main(){
int k,n;
cin>>k;
while(k--){
cin>>n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>map[i][j];
node *root;
if(check(0,0,n)){
root=new node;
root->f=true;
root->x=map[0][0];
memset(root->c,NULL,sizeof(root->c));
}else{
root=new node;
root->f=false;
root->x=1;
extend(root,0,0,n);
}
queue<node*> q;
q.push(root);
string s="";
while(!q.empty()){
node *p = q.front();
q.pop();
if(p->f){
s+="0";
s+='0'+p->x;
}else{
s+="1";
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
q.push(p->c[i][j]);
}
}
int l=s.size()%4;
if(l!=0){
for(int i=0;i<4-l;i++)
s="0"+s;
}
string s2="";
for(int i=0;i<s.size();i+=4){
int x=0;
for(int j=0;j<4;j++)
x+=(s[i+j]-'0')<<(3-j);
switch(x){
case 10:
s2+='A';
break;
case 11:
s2+='B';
break;
case 12:
s2+='C';
break;
case 13:
s2+='D';
break;
case 14:
s2+='E';
break;
case 15:
s2+='F';
break;
default:
s2+='0'+x;
break;
}
}
cout<<s2<<endl;
}
return 0;
}