一文总结考研数学中常用的计算题公式

一文总结考研数学中常用的计算题公式

一、无穷大比较公式

1.当 x → + ∞ x\to +\infty x+​时

ln ⁡ α x ≪ x β ≪ a x ( 常数  α > 0 ,   β > 0 ,   a > 1 ) {\ln}^{\alpha}x \ll x^{\beta} \ll a^x\\ (常数\ \alpha > 0,\ \beta>0,\ a>1) lnαxxβax(常数 α>0, β>0, a>1)

上述关系式中,后面的比前面的趋近无穷的速度更快,所以有下式成立:
lim ⁡ x → + ∞ ln ⁡ α x x β = lim ⁡ x → + ∞ x β a x = 0 \lim_{x\to +\infty}\frac{{\ln}^{\alpha}x}{x^{\beta}}=\lim_{x\to +\infty}\frac{x^{\beta}}{a^x}=0 x+limxβlnαx=x+limaxxβ=0

2.当 n → + ∞ n\to +\infty n+

ln ⁡ α n ≪ n β ≪ a n ≪ n ! ≪ n n ( 常数 α > 0 ,   β > 0 ,   a > 1 ) {\ln}^{\alpha}n \ll n^{\beta} \ll a^n \ll n! \ll n^n\\ (常数\alpha>0,\ \beta>0,\ a>1) lnαnnβann!nn(常数α>0, β>0, a>1)

二、常用极限公式

1.两个基本极限

lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x\to 0}\frac{\sin x} {x}=1 x0limxsinx=1

lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim_{x\to0}(1+x)^{\frac{1}{x}}=e x0lim(1+x)x1=e

x = 1 x x=\frac{1}{x} x=x1 ,代入第二个基本极限中可得
lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim_{x\to0}(1+x)^{\frac{1}{x}}=e x0lim(1+x)x1=e

2.含根式/指数的极限公式

lim ⁡ n → ∞ n n = lim ⁡ n → ∞ n 1 n = 1 \lim_{n\to \infty}\sqrt[n]{n}=\lim_{n\to \infty}n^{\frac{1}{n}}=1 nlimnn =nlimnn1=1

lim ⁡ n → ∞ a n = lim ⁡ n → ∞ a 1 n = 1 \lim_{n\to \infty}\sqrt[n]{a}=\lim_{n\to \infty}a^{\frac{1}{n}}=1 nlimna =nliman1=1

lim ⁡ x → 0 a x − 1 x = ln ⁡ a   ( a > 0 ) \lim_{x\to 0}\frac{a^x-1}{x}=\ln a\ (a>0) x0limxax1=lna (a>0)

三、等价无穷小替换公式

1.简单替换公式

x ~ sin ⁡ x ~ tan ⁡ x ~ arcsin ⁡ x ~ arctan ⁡ x x~\sin x~\tan x~\arcsin x ~ \arctan x xsinxtanxarcsinxarctanx

  • 上式中所有项与 x x x 同阶

2.含对/指数的替换公式

x  ~  ln ⁡ ( 1 + x )  ~  e x − 1 x\ ~\ \ln(1+x)\ ~\ e^x-1\\ x  ln(1+x)  ex1

  • 上式中所有项与 x x x 同阶

x ln ⁡ a  ~  a x − 1 x\ln a\ ~\ a^x-1\\ xlna  ax1

α x  ~  ( 1 + x ) α − 1 \alpha x \ ~ \ (1+x)^{\alpha}-1 αx  (1+x)α1

1 2 x 2  ~  x − ln ⁡ ( 1 + x ) \frac{1}{2}x^2\ ~ \ x-\ln(1+x) 21x2  xln(1+x)

3.含三角函数相减的替换公式

1 2 x 2  ~  1 − cos ⁡ x \frac{1}{2}x^2\ ~\ 1-\cos x 21x2  1cosx

1 3 x 3  ~  tan ⁡ x − x \frac{1}{3}x^3\ ~\ \tan x-x 31x3  tanxx

1 3 x 3  ~  x − arctan ⁡ x \frac{1}{3}x^3\ ~\ x-\arctan x 31x3  xarctanx

1 6 x 3  ~  x − sin ⁡ x \frac{1}{6}x^3\ ~\ x-\sin x 61x3  xsinx

1 6 x 3  ~  arcsin ⁡ x − x \frac{1}{6}x^3\ ~\ \arcsin x-x 61x3  arcsinxx

四、导数/微分公式

1.常数:

C ′ = 0 ,      d C = 0   ( C 为常数 ) C\prime=0,\ \ \ \ dC=0\ (C为常数) C=0,    dC=0 (C为常数)

2.含对数的:

( log ⁡ a x ) ′ = 1 x ln ⁡ a , d log ⁡ a x = 1 x ln ⁡ a d x ( a > 0 , a ≠ 1 ) (\log_ax)\prime=\frac{1}{x\ln a},\\d\log_ax=\frac{1}{x\ln a}dx\\(a>0,a\ne1) (logax)=xlna1,dlogax=xlna1dx(a>0,a=1)

( ln ⁡ x ) ′ = 1 x , d ln ⁡ x = 1 x d x (\ln x)\prime=\frac{1}{x},\\ d\ln x=\frac{1}{x}dx (lnx)=x1,dlnx=x1dx

3.含指数/幂的:

( e x ) ′ = e x , d e x = e x d x (e^x)\prime=e^x,\\ de^x=e^xdx (ex)=ex,dex=exdx

( a x ) ′ = a x ln ⁡ a , d a x = a x ln ⁡ a   d x ( a > 0 , a ≠ 1 ) (a^x)\prime=a^x\ln a,\\ da^x=a^x\ln a\ dx\\ (a>0,a\ne1) (ax)=axlna,dax=axlna dx(a>0,a=1)

( x α ) ′ = α x α − 1 d x α = α x α − 1 d x ( α 为常数 ) (x^{\alpha})\prime=\alpha x^{\alpha -1}\\ dx^{\alpha}=\alpha x^{\alpha-1}dx\\ (\alpha 为常数) (xα)=αxα1dxα=αxα1dx(α为常数)

4.含三角函数的:

1. 正/余弦

( sin ⁡ x ) ′ = cos ⁡ x , d sin ⁡ x = cos ⁡ x d x (\sin x)\prime=\cos x,\\ d\sin x=\cos xdx (sinx)=cosx,dsinx=cosxdx

( cos ⁡ x ) ′ = − sin ⁡ x , d cos ⁡ x = − sin ⁡ x d x (\cos x)\prime=-\sin x,\\ d\cos x=-\sin xdx (cosx)=sinx,dcosx=sinxdx

( a r c s i n x ) ′ = 1 1 − x 2 , d a r c s i n x = 1 1 − x 2 d x (arcsinx)\prime=\frac{1}{\sqrt{1-x^2}},\\ darcsinx=\frac{1}{\sqrt{1-x^2}}dx (arcsinx)=1x2 1,darcsinx=1x2 1dx

( a r c c o s x ) ′ = − 1 1 − x 2 d a r c c o s x = − 1 1 − x 2 d x (arccosx)\prime=-\frac{1}{\sqrt{1-x^2}}\\ darccosx=-\frac{1}{\sqrt{1-x^2}}dx (arccosx)=1x2 1darccosx=1x2 1dx


2.正/余切

( t a n x ) ′ = s e c 2 x d t a n x = s e c 2 d x (tanx)\prime=sec^2x\\ dtanx=sec^2dx (tanx)=sec2xdtanx=sec2dx

( c o t x ) ′ = − c s c 2 x d c o t x = − c s c 2 x d x (cotx)\prime=-csc^2x\\ dcotx=-csc^2xdx (cotx)=csc2xdcotx=csc2xdx

( a r c t a n x ) ′ = 1 1 + x 2 d a r c t a n x = 1 1 + x 2 d x (arctanx)\prime=\frac{1}{1+x^2}\\ darctanx=\frac{1}{1+x^2}dx (arctanx)=1+x21darctanx=1+x21dx

( a r c c o t x ) ′ = − 1 1 + x 2 d a r c c o t x = − 1 1 + x 2 d x (arccotx)\prime=-\frac{1}{1+x^2}\\ darccotx=-\frac{1}{1+x^2}dx (arccotx)=1+x21darccotx=1+x21dx


3.正/余割

( s e c x ) ′ = s e c x t a n x d s e c x = s e c x t a n x d x (secx)\prime=secxtanx\\ dsecx=secxtanxdx (secx)=secxtanxdsecx=secxtanxdx

( c s c x ) ′ = − c s c x c o t x d c s c x = − c s c x c o t x d x (cscx)\prime=-cscxcotx\\ dcscx=-cscxcotxdx (cscx)=cscxcotxdcscx=cscxcotxdx

五、积分公式

  • 以下积分公式中, α 和 a \alpha和a αa 均为常数,除声明者外,均按 a > 0 a>0 a>0处理.

1.线性积分公式 :

∫ k d x = k x + C \int{kdx}=kx+C kdx=kx+C

2.含分式的积分公式:

∫ 1 x d x = ln ⁡ ∣ x ∣ + C \int{\frac{1}{x}dx}=\ln{|x|}+C\\ x1dx=lnx+C

∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C \int{\frac{1}{a^2+x^2}dx}=\frac{1}{a}\arctan{\frac{x}{a}}+C\\ a2+x21dx=a1arctanax+C

∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ a + x a − x ∣ + C \int{\frac{1}{a^2-x^2}dx}=\frac{1}{2a}\ln{|\frac{a+x}{a-x}|}+C\\ a2x21dx=2a1lnaxa+x+C

∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C \int{\frac{1}{\sqrt{a^2-x^2}}dx}=\arcsin{\frac{x}{a}}+C\\ a2x2 1dx=arcsinax+C

∫ 1 x 2 ± a 2 d x = ln ⁡ ∣ x + x 2 ± a 2 ∣ + C \int{\frac{1}{\sqrt{x^2\pm a^2}}dx}=\ln|x+\sqrt{x^2\pm a^2}|+C x2±a2 1dx=lnx+x2±a2 +C

3.含指数\幂函数的积分公式:

∫ e x d x = e x + C \int{e^xdx}=e^x+C exdx=ex+C

∫ a x d x = a x ln ⁡ a + C    ( a > 0 , a ≠ 1 ) \int{a^xdx}=\frac{a^x}{\ln a}+C\ \ (a>0,a\ne1) axdx=lnaax+C  (a>0,a=1)

∫ x α d x = 1 α + 1 x α + 1 + C ( α ≠ − 1 ) \int{x^{\alpha}dx}=\frac{1}{\alpha+1}x^{\alpha+1}+C(\alpha\ne-1) xαdx=α+11xα+1+C(α=1)

4.含三角函数的积分公式:

(1) 正/余弦

∫ sin ⁡ x d x = − cos ⁡ x + C \int{\sin xdx}=-\cos x+C sinxdx=cosx+C

∫ cos ⁡ x d x = sin ⁡ x + C \int{\cos xdx}=\sin x+C cosxdx=sinx+C


(2)正/余切

∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C ( 等价于 ∫ sin ⁡ x cos ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C ) \int{\tan xdx}=-\ln|\cos x|+C\\ (等价于\int{\frac{\sin x}{\cos x}dx}=-\ln|\cos x|+C) tanxdx=lncosx+C(等价于cosxsinxdx=lncosx+C)

∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C ( 等价于 ∫ cos ⁡ x sin ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C ) \int{\cot xdx}=\ln|\sin x|+C\\ (等价于\int{\frac{\cos x}{\sin x}dx}=\ln|\sin x|+C) cotxdx=lnsinx+C(等价于sinxcosxdx=lnsinx+C)


(3)正/余割

∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ( 等价于 ∫ 1 cos ⁡ x d x = ln ⁡ ∣ 1 cos ⁡ x + sin ⁡ x cos ⁡ x ∣ + C ) \int{\sec xdx}=\ln|\sec x+\tan x|+C\\ (等价于\int{\frac{1}{\cos x}dx}=\ln|\frac{1}{\cos x}+\frac{\sin x}{\cos x}|+C) secxdx=lnsecx+tanx+C(等价于cosx1dx=lncosx1+cosxsinx+C)

∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C ( 等价于 ∫ 1 sin ⁡ x d x = ln ⁡ ∣ 1 sin ⁡ x − cos ⁡ x sin ⁡ x ∣ + C ) \int{\csc xdx}=\ln|\csc x-\cot x|+C\\ (等价于\int{\frac{1}{\sin x}dx}=\ln|\frac{1}{\sin x}-\frac{\cos x}{\sin x}|+C) cscxdx=lncscxcotx+C(等价于sinx1dx=lnsinx1sinxcosx+C)

∫ sec ⁡ 2 x d x = tan ⁡ x + C ( 等价于 ∫ 1 cos ⁡ x 2 d x = sin ⁡ x cos ⁡ x + C ) \int{{\sec^2x}dx}=\tan x+C\\ (等价于\int{\frac{1}{{\cos x}^2}dx}=\frac{\sin x}{\cos x}+C) sec2xdx=tanx+C(等价于cosx21dx=cosxsinx+C)

∫ csc ⁡ 2 x d x = − cot ⁡ x + C ( 等价于 ∫ 1 sin ⁡ 2 x d x = − cos ⁡ x sin ⁡ x + C ) \int{{\csc}^2xdx}=-\cot x+C\\ (等价于\int{\frac{1}{\sin^2x}dx}=-\frac{\cos x}{\sin x}+C) csc2xdx=cotx+C(等价于sin2x1dx=sinxcosx+C)

∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C ( 等价于 ∫ 1 cos ⁡ x ⋅ sin ⁡ x cos ⁡ x d x = 1 cos ⁡ x + C \int{\sec x\tan xdx}=\sec x +C\\ (等价于\int{\frac{1}{\cos x}\cdot\frac{\sin x}{\cos x}dx}=\frac{1}{\cos x}+C secxtanxdx=secx+C(等价于cosx1cosxsinxdx=cosx1+C

∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C ( 等价于 ∫ 1 sin ⁡ x ⋅ cos ⁡ x sin ⁡ x d x = − 1 sin ⁡ x + C ) \int{\csc x \cot x dx}=-\csc x+C\\ (等价于\int{\frac{1}{\sin x}\cdot\frac{\cos x}{\sin x}dx}=-\frac{1}{\sin x}+C) cscxcotxdx=cscx+C(等价于sinx1sinxcosxdx=sinx1+C)

  • 14
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姚杰献

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值