高等数学《常微分方程》基础概念和定理梳理(考研数二复习)

我在计算机考研复习过程中,发现了一些难以理解的概念(主要是高数/线代/数据结构),它们在教科书中零散地分布,有时候逻辑上并不一致和连贯。为了弄清楚这些内容的最核心部分,试图将其去粗取精,用自己的逻辑,将这些内容浓缩成一篇适合入门的csdn博客。

本文在重要公式和概念方面,参考了同济大学教材,删去了一些我认为会导致理解偏差的冗余语句,同时也加入了一些自己的简介,并重新用markdown语法排版,让这些概念更加简洁易懂、具有逻辑连贯性。

希望能对各位读者学习微积分和高数有帮助,让有志于在科技领域发展的人,学习工程数学/科研更加轻松。

第一节 微分方程的相关概念

基本概念

(1)微分方程的定义:一般地,凡表示未知函数、末知函数的导数与自变量之间关系的方程,叫做微分方程,有时也简称方程

(2)微分方程的阶:微分方程中,所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶


方程的解相关概念

(1)微分方程的解:找出能满足微分方程的函数,将该函数代入微分方程使方程称为恒等式,该函数则称为此微分方程的解

(2)通解:微分方程的解中含有任意常数,且常数个数与微分方程的阶数相同,则这样的解称为此微分方程的通解

(3)特解:确定了通解中任意常数后,可以得到该条件下微分方程的特解,简称微分方程的特解。特解可以有很多个,取决于任意常数的确定情况。

(4)初值条件:将方程中的任意常数,给定一个初始的值,这种情况下给定的值称为初值条件。

(5)解的图形:微分方程的解的图形是一条积分曲线,也可称为微分方程的积分曲线。初值问题的几何意义,就是求微分方程通过点(x_0, y_0)的那条积分曲线。


第二节 可分离变量的微分方程

(1)可分离变量的微分方程形式:

如果一个微分方程能写成如下形式:

$$
g(y)dy = f(x)dx
$$

即:一端只含y的函数和dy​,另一端只含x的函数和dx, 那么原方程就称为可分离变量的微分方程

(2)隐式解:

(3)隐式通解:


第三节 齐次方程

(1)齐次方程:

如果一个一阶微分方程可化为如下形式:

$$
\frac{dy}{dx}=\frac{xy-y^2}{x^2-2xy}
$$

那么它被称为齐次方程。


第四节 一阶线性微分方程

(1)线性方程的概念:

形如

$$
\frac{dy}{dx}+P(x)y=Q(x)
$$

的方程,称为一阶线性微分方程,因为它对于未知函数y及其导数是一次方程。

(a)如果Q(x) = 0,那么方程(3)称为齐次的;

(b)如果Q(x) = 0, 那么方程(3)称为非齐次的。


第五节 可降阶的高阶微分方程

(1)高阶微分方程:阶数为二阶及以上的微分方程,称为高阶微分方程。

根据公式 y'' = f(x, y, y') ,二阶微分方程可以表示为含有一阶导数的一阶微分方程。

三种容易降阶的高阶微分方程:

  1. y^{(n)} = f(x) 型:

两边同时积分可得

$$
y^{(n-1)} = f(x)
$$

再次积分可得

$$
y^{(n-2)} = \int{f(x)}dx+C_1
$$

同理可得

$$
y^{(n-2)} = \int[\int{f(x)}dx+C_1]dx+C_2
$$

方程(6)即为含有 n 个任意常数的通解。


  1. y'' = f(x, y') 型:

该方程,右侧不显式含有未知函数 y 。

设 y' = p ,则

$$
y'' = \frac{dp}{dx} = p'
$$


  1. y'' = f(y, y') 型:

该方程,右侧不显式含有自变量 x 。

令 y' = p,同时利用复合函数求导法则,将 y'' 化为对 y 的导数,即

$$
y'' = \frac{dp}{dx} = \frac{dp}{dy}·\frac{dy}{dx} = p\frac{dp}{dy}
$$


第六节 高阶线性微分方程

以二阶线性微分方程为例,引入高阶线性微分方程的内容。

二阶线性微分方程的概念:

形如

$$
\frac{d^2y}{dx^x}+P(x)\frac{dy}{dx}+Q(x)y = f(x)
$$

的微分方程,称作二阶线性微分方程

(a)当方程右侧 f(x) \equiv 0​ 时,方程叫做齐次

(b) 当 f(x)\not\equiv 0 时,方程叫做非齐次

线性微分方程解的结构:

以二阶齐次线性方程为例:

$$
y''+P(x)y'+Q(x)y=0
$$


(1)定理一:

如果函数 y_.(x) 与 y_2(x) 是方程(10)的两个解,那么

$$
y=C_1y_1(x)+C_2y_2(x)
$$

也是(10)的解,其中 C_1 , C_2​ 是任意常数.


(2)定理二:

如果 y_1(x) 与 y_2(x) 是方程(10)的两个线性无关的特解,那么

$$
y=C_1y_1(x)+C_2y_2(x)
$$

就是方程(10)的的通解。其中 C_1, C_2​ 是任意常数。

补充概念:线性相关的定义——设 y_1(x),y_2(x),...,y_n(x) 为定义在区间 I 上的 n 个函数, 如果存在 n 个不全为零的常数 k_1, k_2, ..., k_n ,使得当 x\in I 时有恒等式

$$
k_1y_1+k_2y_2+···+k_ny_n\equiv0
$$

成立,那么称这 n 个函数在区间 I​ 上线性相关;否则称线性无关

将定理二推广到 n 阶齐次线性方程,有

推论: 如果


(3)定理三:


(4)定理四:


参考资料:《高等数学下册(同济大学第七版)》

  • 19
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姚杰献

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值