电子科技大学-《图论》-研究生课程-知识点汇总-anki卡片定义定理整理(重新排版)-503张卡片

平凡图的定义

只有一个顶点而无边



简单图的定义

没有重边的图



重边的定义

连接两个顶点间的边的数量若大于1则为重边



u和v相邻是什么意思

u和v这两个端点间有边



端点u与边e相关联是什么意思

e的一个端点是u



图的同构的概念

两个图之间的顶点集之间存在双射,存在一一对应的关系,则两图同构。



偶图
同义词
二部图
同义词


完全图的概念

这个图中的每对顶点之间都有一条边相连的简单图



完全图的记法

Kn
这是什么的记法


偶图的定义

一个图中的点集可以分为两个子集X和Y,而这个图中所有的边的两端都连接子集X和Y



完全偶图的定义

对于一个偶图,若点集X和Y之间,任意一对点都存在边,则称为完全偶图。



完全偶图的记法

Km,n
这是什么的记法


补图的概念

若存在一个图,这个图跟某个图相比点一一对应,而两个图的边正好可以组成一个完全图,则这两个图互为补图。



补图的记法

大写字母上面加一杠



顶点数
又称
阶数
又称


A与B同构
如何表示

什么意思


若某个图是自补的,可以推出什么。(定理)

若该图的阶数为n,则n≡0,1(mod 4)



G的顶点的度
含义
某个顶点与之关联的边的数目,(环记计算两次)
叫做什么


δ(G)
表示什么意思
图G众顶点的最小度
用什么符号表示


Δ(G)
表示什么意思
图G众顶点的最大度
用什么符号表示


奇点
是什么意思
度为奇数的顶点
叫什么


偶点
是什么意思
度为偶数的顶点
是什么


k正则图
的概念
某个图的所有顶点的度都为k
叫做什么


d(v)
的含义
顶点v的度
如何用字母表示


完全图均是正则图?{{c1::}}

对 错



完全偶图Kn,n均是正则图?{{c1::}} 注意:完全偶图的两部分的点数相同。

对 错



图G的英文

graph图表



顶点V的英文

vertex顶点



边E的英文

edge边



度d的英文

degree



图论基本定理
又名
握手定理
又名


握手定理/图论基本定理的内容

一个图中所有顶点的度之和是边数的两倍。

这同时也说明了,任意一个图的度数之和为偶数

在任何图中,奇点个数都为偶数{{c1::}}

对 错



证明:在任何图中奇点个数为偶数

由握手定理知,所有顶点度数之和为边数之和的两倍→所有顶点度数之和为偶数。 顶点由奇点和偶点组成,这些点的度加起来为偶数。 因为偶点的度加起来必为偶数,要想奇点偶点加起来之和为偶数,那奇点数量必为偶数。



证明:正则图的阶数n和度数k,这两个不会同时为奇数

因为nk为偶数(握手定理,所有图的度数之和均为偶数),所以n和k不会同时为奇数。



n(G)
表示什么
图G的点数/阶数
用符号表示


m(G)
表示什么
图G的边数
用符号表示


度序列的概念

图G的各个顶点的度构成的序列



度序列的和是多少

2m,即边数的两倍



某个非负整数序列是图的度序列的充要条件是什么

这个序列之和为偶数



可图序列的概念

若某个非负整数序列,存在一个简单图使得以它为度序列。



某个数组是可图的,是什么意思

存在一个简单图,以该数组为度序列。



若d1,d2…dn是可图序列,则可以推导出什么也是可图序列

则d2-1,d3-1…dn-1-1,dn也是可图序列



证明一个简单图的n个点的度不能互不相同

1、无孤立点时,每个点的度d满足n-1≥d≥1,因为有n个点,所以必有两个点的度相同。 2、有一个孤立点时,每个点的度满足n-2≥d≥1… 3、有两个孤立点时…



频序列的定义

对于图G有度序列d1,d2…dn,这个序列中各个数字出现的次数组成的数列叫做频序列



b1,b2,b3…bn
表示的是什么序列
频序列
的表示方法(用什么字母)


证明:图G和它的补图G补图有相同的频序列

对于图G的任意一个顶点,该点的度和对应补图该点的度之和为n-1。 则若图G的某几个点有相同的度,则这几个点在补图中它们的度也是相同的, 因为度相同的点的数量相同,由此获得的频序列也是相同的。



子图
的定义
点集:V(H)⊆V(G) 边集:E(H)⊆E(G) 图H是图E的什么



真子图
的定义
H⊆G且H≠G 即H⊂G 则H是G的什么



导出子图
的符号表示
G[V’]
表示什么意思


导出子图
的定义
V是图G的点集,V’是V的一个非空子集, 以V’为点集,两端点均在V’上的边组成边集, 这样的点集和边集组成的图是图G的
的什么


G-v
表示什么
图G删除V’中的顶点及其相关联的边后得到的子图
怎么用字母表示(V’={v})


G[E’]
表示什么
图G的由边集E’导出的子图
如何用字母表示


G的边导出子图
是什么意思
E’是E的非空子集,以E’为边集,以E’中边的端点为顶点集组成的子图
叫什么


G-E’
表示什么
G中删除边集E’及其相关的顶点构成的子图
如何用字母表示


G-e
表示什么
图G删去边集E’及其顶点得到的子图
如何用字母表示(E’={e})


简单图中所有不同的生成子图的数量是多少

2m



证明简单图G所有不同的生成子图的个数是2m个

边数分别为0、1、2、3…m的子图数量为: (通过排列组合公式):C_{m}{0}+C_{m}{1}+C_{m}{2}+…C_{m}{m}=2m



两个图不相交
的含义
G1和G2是图G的两个子图,若G1和G2无公共顶点, 则G1与G2的关系为

图的运算

G1与G2边不重
的含义
G1和G2是图G的两个子图,若G1和G2无公共边, 则G1和G2的关系是



G1和G2是G的子图, 若两图无公共顶点,则称他们是{{c1::不相交}}的, 若两图无公共边 , 则称他们是{{c2::边不重}}的。





并图
的概念
G1和G2是G的两个子图,两个子图顶点集的并集+两个子图边集的并集 获得的图
叫什么


交图
的定义
G1和G2是G的子图,两个图的顶点集的交集+两个图的边集的交集 组成的图
叫什么


G1-G2
表示什么
图G1去掉图G2中的边组成的图
用符号表示


G1+G2
表示什么
若G1与G2不相交,则G1与G2的并图
如何用符号表示


G1△G2
表示什么
对称差
怎么用符号表示


对称差的含义
图的运算
G1△G2 = (G1∪G2) -(G1∩G2) = (G1-G2)∪(G2-G1) 即两个图的并减去两个图的交。



G1-G2是图G1减去图G2的{{c1::边}}后得到的图



注意:只减去了边!

联图
的定义
两个图G1和G2不相交,在并图G1+G2中,把G1到G2的每个顶点连接起来
叫什么图
图的运算

联图
的符号表示
G1∨G2
表示什么


积图
的表示方法
G1×G2
表示什么
图的运算

ui adj vi
表示什么
ui和vi邻接
怎么用符号表示
图的运算

正则图一定是简单图{{c1::}}

对 错



n方体
全称
超立方体Qn
简称


n方体的定义

Q1=K2,Qn=K2×Qn-1



ω(G)
表示什么
图G的分支数量
如何用符号表示


证明:若G是非连通图,则G的补图是连通图

(哇哈)



若图G是非连通图,则图G的补图也是非连通图{{c1::}}

错 对
定理:若G为非连通图,则其补图为连通图。


k圈的概念

长为k的圈



奇圈和偶圈的概念

圈的长度为奇数为奇圈, 否则为偶圈



3圈
又称
三角形
又称
路与图

距离的概念

连接两点中长度最短的途径的长度



d(u,v)
表示什么
点u到点v的距离
用符号表示


d(G)
表示什么
图的直径
用符号表示
路与图的连通性

图的直径的概念

在这个图中所有的两两点之间的距离中找到的最大值,称为图的直径



具有二分类性质的图是什么图

偶图



偶图与奇圈的关系(偶图判定定理)

一个图是偶图,当且仅当这个图没有奇圈



赋权图的概念

对于图中的每条边都赋一个权的图



w(e)
表示什么
边e的权
用符号表示



表示什么
赋权图中路P的长
用符号表示


最短路问题是什么

在赋权图中找到某两个点之间的最短路线



邻接矩阵 和 推广邻接矩阵 分别是什么

邻接矩阵:用0和1来表示图中顶点间是否有联系 推广邻接矩阵:用数字表示图中顶点间的边的数量



图G是连通的
用矩阵语言如何表示
没有任何一种标定法,能使它的邻接矩阵化为
说明什么


标定法是什么

在一个图中给顶点标号的方法



同一个图的不同标定法得到的邻接矩阵的关系

两个矩阵相似,即存在矩阵P使得A1=P-1A2P



若矩阵A是图G的推广的邻接矩阵,则An的每行每列表示的含义是什么

得到的数字表示这两个点之间长度为n的通道的数量



关联矩阵的概念

行和列分别对应图中的点和边,若某点和某边相关联, 则该位为1,否则为0.



{{c1::邻接矩阵}}表示点与点之间是否连通, {{c2::关联矩阵}}表示点与边之间是否有联系。





图G的特征多项式的定义

图G的邻接矩阵为A,E为单位矩阵, 则|λE-A|为特征多项式



邻接谱
简称

全称


邻接谱
符号表示
Spec(G)
是什么


邻接谱的英文

Adjacency spectral



l部图的定义

将简单图的点集划分为l个部分,每个部分均非空,且内部均不连通, 则将这个图称为l部图。



偶图与l部图的关系

偶图是l=2时的l部图



对于l部图中的l,是数字越小要求越严格,还是数字越大要求越严格

数字越小要求越严格, 当l=2时为偶图,任何一个n阶图都是n部图, 若l1<l2,则l1部图一定是l2部图



Kn1,n2,…nl
表示什么
完全l部图
用符号K表示(不是用符号T)


完全l部图的含义

在l部图分成的l个部分中,每个部分之间的所有点之间均邻接



|V|表示什么

点集V中的顶点数



完全l几乎等部图 的概念

在一个l部图中,可以把这个图的点集划分分为两种, 每一种的各个点集内的点的数量都是相同的,且这两种点集中每个点集的点的数量差1.



完全l等部图 的概念

这个图中划分出的每个点集的点的数量都相同



n阶完全l几乎等部图
的符号表示
Tl,n
表示什么
图的基本概念

偶图的2部划分是唯一的{{c1::}}

错 对
连通偶图的2部划分才是唯一的


n阶l部图G获得最大边数的充要条件是什么

G≌Tl,n 即把图G组成完全l几乎等部图



H度序列优于G
简称
H度优于G
全称


H的度序列优于G 的概念

G和H的阶数相同,能找到一种点到点的一一对应方式, 使得H这边的点的度总是大于等于G这边的度,



H的度优于G
反义(换个词)
H度弱于G
反义(换个词)


树的定义

1、连通 2、无圈图



T
表示什么

符号表示


平凡树是什么

平凡图,也就是一个点



树叶的概念

在树中度为1的点



分支点的概念(不是有向图)

在树中度数大于1的点



树都是森林{{c1::}}

对 错



离心率的概念

对于连通图中的某个点,找到这个点到图中最远点的距离, 这个距离称为这个点的离心率。



e(v)
表示什么
点v的离心率
用符号表示
连通图

离心率 的英文

eccentricity



r(G)
表示什么
图G的半径
用符号表示
连通图

图的半径的含义

图中所有点的离心率的最小值, 即找到最“中心”的点离最远点的距离。



中心点 和 中心 的概念

在图中,若某个点的离心率e(v)=半径r(G), 则该点是图的中心点,全体中心点的集合称为图的中心。



证明:每棵树的中心都是一个点或者两个相邻接的点组成的。

对于任意的树,不断去掉树叶,最终剩下的是只有一个点或者两个两个邻接的点。



树的形心与重心的区别

重心是找到离心率最小的点,形心是找到权最小的点, 其中权是某个点作为某个分支中的树叶时,最大的分支的边的数量

注:形心是树特有的,而重心/中心点是任意的图都有的。

生成树、生成森林的概念

对于一个图中的生成子图,若这个生成子图为一棵树或者森林, 则称它为生成树或生成森林。



树枝和弦的概念

生成树的边成为树枝 非生成树的边成为弦



被收缩 的概念

在图中删去某条边,并将这条边的两个端点重合



G▪e
表示什么
G的边e被收缩
用符号表示


τ(G)
表示什么
图G的生成树的棵树
用符号表示


Cayley(凯莱)定理,关于图G某条边被收缩后生成树数量的关系

τ(G)=τ(G▪e)+τ(G-e)



矩阵树定理,求某个图生成子图个数的方式

列一个n
n的矩阵,主对称轴上的数字为各个点的度数, 其余位置是两点之间边数的相反数, 去除最上和最左边的行列之后组成的行列式的结果是这个图的生成子图的数量。



关于求阶数为n的完全图的生成树棵树G(τ)的公式

τ(Kn)=nn-2



基本回路的概念

树T是图G的生成树,树T加上弦er组成的圈Cr, 称圈Cr为对应弦er的基本回路。



基本回路系统的概念

对于某个生成树,跟多条弦组成的基本回路, 这些回路的集合称为 对应于生成树T的基本回路系统。



简述最小生成树的三种算法

1、Kruskal算法: 先找到图中权最小的边,再不断添加相邻的边,使得新加入的边与原有部分组成无圈图,最终将所有点纳入,得到的树为最小生成树。 2、破圈法: 在图中不断找到权最大的且删去后仍是连通图的边,最终使得该图中没有圈,得到的树为最小生成树。 3、Prim算法: 在图中任意找一个点,不断添加相邻的边,后续步骤与Kruskal算法步骤相同。



最小生成树的两种名字中带英文算法的名字

Prim算法 Kruskal(克鲁斯特尔)算法



割边的定义

删去该边后图不连通



割边与圈的关系

e为割边 当且仅当 e不在任何圈中



割点的定义

若点v能划分两个非空子集,而这两个非空子集的公共顶点为v, 则这个点为割点



树与割点的关系(定理) 树中怎样能找到割点?

在树中一个点为割点,当且仅当这个点的度数大于1



自环 的概念

两端点重合的边




全称
块图
简称


块的概念

没有割点的图称为块



重边和重数的概念

连接两个相同顶点的边的数量称为重数, 重数大于1称为重边



只有一个点的块,可能是什么

要么是孤立点,要么是自环



只有一条边的块,可能是什么

要么是自环,要么是割边



当图G阶数大于等于3时,关于图G是块的三个等价命题

1、图G是块 2、G无自环,且任意两个点在同一个圈上 3、G无孤立点,且任意两条边都在同一个圈上



{{c1::点v是图G的割点}} 当且仅当 {{c2::点v属于两个不同的块}}
割点




块割点树的概念

在某个非平凡连通图中,将各个割点和各个块作为顶点, 满足以下条件作为边:边的一边为割点,另一边为块。 这样构成的树为 块割点树



顶点割 的概念

设V’为图G的顶点子集,若G-V’不连通, 则V’称为G的顶点割



k顶点割 的概念

含有k个顶点的顶点割



最小点割 的概念

图G中含有的顶点数最少的顶点割



连通度的定义

将某个图删去若干个点后使得这个图成为平凡图或非连通图 所需要的点数



连通度的符号表示

κ或κ(G)



κ和κ(G)表示什么

连通度



非连通图的连通度为多少

非连通图κ(G)=0



顶点割
简称
点割
全称


边割 与 点割 的对应关系: {{c1::边割}}-{{c2::点割/顶点割}} {{c1::k边割}}-{{c2::k顶点割}} {{c1::最小边割}}-{{c2::最小点割}} {{c1::边连通度λ(G)}}-{{c2::连通度κ(G)}}





匹配的定义

在图中找出边子集M,若这个边子集满足: 1、不含自环。 2、任意两条边不相邻。 则称M是图G的一个匹配



对集 的同义词

匹配



饱和点 与 非饱和点 的定义

若匹配M的某条边与某个顶点v相关联, 则称v是M的 饱和点, 否则称v是M的 非饱和点



完美匹配 的概念

若图中每个顶点均为M饱和点, 则M成为G的完美匹配。



最大匹配的概念

若不存在另一个匹配M’, 使得|M’|>|M|,则M称为G的最大匹配。



M交错路的概念

设M是G的匹配,M交错路指由M中的边和非M中的边交替组成的路。



M可扩路的概念

1、M交错路 2、起点和终点均为M非饱和点



Berge定理: {{c1::M是G的最大匹配}} 当且仅当 {{c2::G不含M可扩路}}。





邻集 的定义

在图中取一个点集S,每个与该点集中的点相邻的点组成集合N(S), N(S)称为S的邻集。



N(S)
表示什么
邻集
用字母表示


Hall定理(婚姻定理):什么时候存在偶图中X到Y的匹配

设G为(X,Y)二分类的偶图,则G包含每个饱和顶点X的匹配 当且仅当 |N(S)|≥|S|对于任意S⊆X成立



存在饱和X每个顶点的匹配 (在二部图G=(X,Y)中)
也被说成
存在X到Y的匹配 (在二部图G=(X,Y)中)
也被说成


覆盖的定义

若点集V(G)中的一个子集K,使得图中的每一条边至少有一个端点在K中, 则K称为G的一个覆盖。



最小覆盖的定义

G中点数最小的覆盖



{{c1::匹配}}-{{c2::覆盖}} {{c1::边}}-{{c2::点}} {{c1::最大匹配}}-{{c2::最小覆盖}}





对应的大写英文字母: 匹配-{{c1::M}} 覆盖-{{c1::K}}





若M为G的匹配,K为G的覆盖, 则|M|和|K|的关系是:

|M|≤|K| 匹配的边数 小于等于 覆盖的点数



最大匹配
字母表示
M*
表示什么


最小覆盖
用字母表示
( \widetilde{K})
表示什么


在图G中最大匹配M与最小覆盖 (\widetilde{K})的关系

|M
|≤| (\widetilde{K})|



在图G中M和K分别为图的匹配和覆盖, 若|M|=|G|,则说明

M是最大匹配,K是最小覆盖



König(柯尼希)定理: 关于在偶图中最大匹配和最小覆盖的关系

在偶图中,最小覆盖的点数=最大匹配的边数



奇分支与偶分支的定义

有奇数个顶点的分支, 有偶数个顶点的分支。



o(G)
表示什么
图G中奇分支的个数
用符号表示


Tutte(塔特)定理: 完美匹配的充要条件

对于偶图G有完美匹配,当且仅当o(G-S)≤|S|对任意S⊂V(G)成立



扎根于u的M交错树 的定义

M是图G的匹配,点u是M饱和点, 若存在一棵包含点u的树,使得这棵树上除了u的任意一点到点u的路径都为交错路, 那这棵树被称为扎根于u的M交错树。



简述匈牙利算法的过程

先找到偶图中的一个匹配M,再找到一个M非饱和点, 通过这个点找以此为起点的M可扩路,若找到, 则交换可扩路的次序,得到一个边数更大的匹配。



最优匹配的概念

在边含有权值的完全偶图(X,Y)中,|X|=|Y|=n,在这其中找到一个具有最大权值的完美匹配, 称为最优匹配。



可行顶点标号 的定义

若某个偶图的每个顶点都有一个值, 使得偶图的任意一条边的值小于等于其两个端点对应的值之和, 则这个偶图的点到数值的函数称为可行顶点标号。



G的对应于l的相等子图 的定义

在图G中找出一些边,这些边的权重刚好等于它的两端点数值之和, 这些边组成的边集的生成子图称为 G的对应于l的相等子图。



Gl
表示什么
G的对应于l的相等子图
用符号表示


因子的概念

1、非空 2、生成子图。(含有原图所有顶点的子图)



k-因子 的概念

k正则的因子



因子分解的概念

将图G分为若干个边不重的因子的并



k-因子分解 的概念

每个因子均为k-因子的因子分解



k-可因子化 的概念

若某个图可进行因子分解,使得每个因子都是k-因子, 则称这个图是k-可因子化的



证明:完全图K2n是1-可因子化的

(排成两列,除了2n以外,别的转圈圈,每一次同一排的做一次匹配, 每一次的匹配是一个因子。转2n-1次后得到2n-1个因子)



有完美匹配 等价于 1-可因子化{{c1::}}

错 对
完美匹配是找出一组边,让这些边覆盖掉所有的点。 而1-可因子化是关于边的故事,它可能不止一个因子,可能是很多很多个因子的组合叠加。


证明:正则偶图都是1-可因子化的

因为正则偶图都具有完美匹配,把每一个完美匹配拿出来作为一个因子, 多个这样的因子进行叠加可成为正则偶图。



Hamilton圈 的概念

经过图中每一个点的圈



证明:具有Hamilton圈的k正则图G,若k为奇数,则G是1-可因子化的

step1、因为k为奇数,G为k正则,则G的点数个数为偶数。 step2、这个H圈可以分解为两个1-因子的并



可平面图的概念

若图G满足除顶点外边不交叉,则称图G为可平面图



可嵌入平面的概念

可嵌入平面=可平面图



平面嵌入的概念

可平面图的一种边不交叉的画法称为G的一个平面嵌入



平面图的概念

G的平面嵌入表示的图称为平面图



面的定义

图将平面划分为若干个区域,每个区域内部连同边界被称为G的一个面



G的面的集合
符号表示
Φ
表示什么


外部面
同义词
无限面
同义词


外部面或无限面的定义

平面中最外面的区域被被称为外部面。



面f的次数的定义

构成f边界的边数(割边计算2次)



面f的次数
符号表示
deg(f)
表示什么


图中所有面的次数之和 和 边数的关系

所有面的次数的总和=边数2



在同一个连通平面图中,点数n、边数m、面数φ有什么联系(欧拉公式)

n+φ=m+2



对于有k个连通分支的平面图,点数n、边数m、面数φ、连通分支数k之间的关系是什么

n+φ-m=k+1

n+φ-m=2-2γ

正常边着色的含义

若某个图的相邻边有不同的着色,则称对G进行正常边着色。



k边可着色的含义

若图G可用k种颜色正常边着色,则G是k边可着色的。



边色数 的定义

一个图进行最小边着色的最小颜色数量



图G的边色数
用符号表示
χ′(G) (希腊字母)
表示什么


色组 的概念

对图G进行正常边/点着色后,同一种颜色的边组成的边集/点集 称为一个色组



点u缺i色 的概念

与点u关联的边中没有边使用到颜色i



König(格尼)定理 若G是偶图,则(关于边色数)
图的着色
χ′(G)=△(G)



Vizing(维津)定理: 关于一般简单图的边色数的关系

G是一般简单图,则χ′(G)=△或χ′(G)=△+1



特殊简单图的边色数: 图G中{{c3::仅有一个点的的度数为△}},或者{{c2::刚好两个点的度数为△,且这两个点相邻}}。 图G的边色数为{{c1::χ′(G)=△}}





正常顶点着色 的概念

对图G的每个点进行着色,使得每个相邻点有不同颜色, 这种着色方式称为 对G的正常顶点着色。



k可着色的 的定义

若用k种颜色可以对G进行正常顶点着色,则称G是k可着色的。



色数是{{c1::}}的简称

点色数 边色数



色数
用符号表示
χ(G) (希腊字母)
表示什么


k色图的概念

对于一个图来说,可以用的最小颜色数k对其正常顶点着色, 这个图称为k色图。



生成子图

满足V(H)=V(G)的子图H

此定义与因子分解有关。

Hamilton图是什么

存在Hamilton圈的图



若G是简单平面图,则δ有什么特点

δ≤5



连通平面图G{{c1::是2连通的}},当且仅当{{c2::G的每个面的边界是圈}}。


圈:没有重复顶点的路径。


图G可嵌入曲面S的概念

图G能画在曲面S上,且边仅在端点相交



G的一个S嵌入 的概念

图G若存在一个嵌入S曲面的画法,使得边仅在顶点相交,称为是G的一个S嵌入



一个图能嵌入平面 →(推导出) 这个图能嵌入球面 但必要性不成立。{{c1::}}

错 对
一个图能嵌入平面,当且仅当这个图能嵌入球面


球极平面射影 的概念

从球面到平面的映射关系



凸多面体棱数和面数的关系(欧拉公式)

n–m+φ=2 (与嵌入平面的欧拉公式相同)



存在那些正多面体

正4、6、8、12、20面体



极大可平面图 的概念

若在一个简单可平面图的任意两个不相邻两点间加一条边, 新的图不可平面,则这个图是一个极大可平面图。



极大平面图 的概念

极大可平面图的嵌入 称为极大平面图



极大可平面图不一定连通{{c1::}}

错 对
极大可平面图一定是连通图


当极大可平面图的阶数大于3时,该图也可能存在割边{{c1::}}

错 对
一定不存在割边


若图G是阶数大于3的简单平面图,则图G是极大可平面的充要条件是什么

各个面的次数均为3,即每个面的边界都是三角形。



极小不可平面图 的概念

任意删去一条边得到的图都是可平面图



每个4连通的{{c1::极大平面图}}必为哈密尔顿图
平面图




外可平面图的概念

若某个可平面图存在一种平面嵌入,使得每一个顶点都在同一个面, 则这个图称为外可平面图。



外平面图的概念

外可平面的一种使得所有点都在同一个面的嵌入。



不一定能存在一种嵌入使得外可平面图的顶点都在外部面上。{{c1::}}

错 对
一定存在这样的嵌入。


极大外可平面图 的概念

对于一个可平面图,若在任意不相邻的两个顶点加上一条边后,这个新的图变为非外可平面图。 则这个可平面图称为极大外可平面图。



极大外平面图的概念

极大外可平面图的一个嵌入。



极大外平面图长什么样子

外部是一个多边形,内部是若干个三角形



若G是极大外平面图,则G中存在{{c1::2}}个不相邻且度数为2的端点。





设G是极大外平面图,n≥3,则内部面的数量为多少

n-2



G

表示什么
图G的对偶图
用符号表示


对偶图的概念

将原图的每个面对应出一个点,共边的两个面用边相连组成的新图叫做原图的对偶图。



点独立集的的概念

色组(顶点的划分方式)



五色定理

对于任何简单图均有χ(G)≤5



Pk(G)
表示什么
图G的色多项式
用符号表示


色多项式的概念

给定标号图G和颜色数量k,色多项式Pk(G)表示正常顶点着色的方式数。



理想子图的概念

1、生成子图(顶点集与原图的顶点集相同) 2、每个分支都是完全图



Nr(G)
表示什么
G的具有r个分支的理想子图的个数
用符号表示


团的概念

图G的一个顶点子集S,这个子集的图的导出子图为完全图。



k团的概念

图中含有k个点的团



团数 的概念

图G中找到的最大团的点数叫做团数

图G的一个团是指G的顶点子集S,使得导出子图G[S]是完全图。G的k团是指G的含k个点的团;G的最大团的点数称为G的团数,记为cl(G)

cl(G)
表示什么
图G的团数
用符号表示


完美图的概念

若图G的任意子图H均有χ(H)=cl(H),即H的点色数=团数, 则称G为完美图



G的面数=G的点数{{c1::}}

错 对
只有在G是连通图的情况下才成立


G的{{c1::面数}} = G
的{{c2::点数}} G的{{c1::边数}} = G的{{c2::边数}} G的{{c1::点数}} = G的{{c2::面数}}(G是连通图)
对偶图




K3,3的对偶图是连通的{{c1::}}

错 对
一个图有对偶图的前提是这个图是个平面图


同构的平面图对应的对偶图也是同构的{{c1::}}

错 对
同构的平面图对应的对偶图不一定同构


对于平面图G有(G*)=G成立{{c1::}}

错 对
当且仅当G为连通图时成立


若图G是平面图,当且仅当{{c1::图G是连通图}}时,(G
)=G





G是可平面图的充要条件是G不含K5或K3,3{{c1::}}

错 对
G是可平面图 →(推得) G不含K5和K3,3 即充分性满足 但反过来的必要性不满足,即存在不含K5和K3,3依然不可平面的图


在2度顶点内扩充 的含义

在一条边中间插入一个顶点,并将这条边分为两条边。



在2度顶点内收缩的含义

将一个2度顶点去掉,并将与其关联的两条边合并为一条边



在2度顶点内是同构的 的同义词

同胚的



同胚的 概念

如果两个图同构或者这两个图能通过在2度顶点扩充或者收缩后成为同构的两个图, 那这两个图称为是同胚的。



若图G1为可平面图,G1与G2同胚,则图G2也是可平面图{{c1::}}

对 错
图的可平面性在同胚意义下不变。


基础简单图的概念

去掉某个图的自环,并将这个图的重边用一条边代替,新产生的图称为原图的基础简单图。



图G是可平面图 当且仅当(两个)

图G的基础简单图是可平面图, 当且仅当 图G的每个块是可平面图。



收缩边uv运算的同义词

初等收缩



初等收缩的概念

去掉某条边,重合其顶点,并去掉因此产生的重边和自环。



G/uv
表示什么
图G对边uv进行初等收缩后得到的图
用符号表示


G可收缩到H的含义

图G可以通过一系列初等收缩得到H



瓦格纳定理:一个图是可平面图,当且仅当(关于收缩)

它不含可收缩到K5或K3,3的子图。

一个定理是可收缩到K5或K3,3,另一个判断是是否含有K5或K3,3。

环柄是什么

图中边与边之间的“立交桥”
可平面图


亏格
用符号表示
γ(G) (希腊字母)
表示什么


亏格的概念

对于一个不可平面图,若添加k个环柄可以让其嵌入球面,则这个k的最小值被称为G的亏格



引入亏格的概念,对于连通图来说,点数、面数、边数、亏格数的关系

n–m+φ=2–2γ



1-可因子分解的3正则图必有Hamilton圈{{c1::}}

错 对
如图


存在有割边的3正则图可以1-因子分解{{c1::}}

错 对
有割边的3正则图不能1-因子分解


关于K2n+1的因子分解

K2n+1是n个Hamilton圈的并

K2n是一个1-因子和n-1个Hamilton圈的并

关于K2n进行2-因子分解

K2n是一个1-因子和n-1个Hamilton圈的并

K2n+1可以分解为n个哈密尔顿圈之和,K2n+1是标准的

没有割边的3正则图可以分解成什么

每一个没有割边的3正则图都能分解为一个1-因子和一个2-因子



一个连通图是2-可因子化的,当且仅当

它是偶度数正则图



关于偶度数正则图的因式分解

连通的偶度数正则图都是2-可因子化的



厚度 的概念

若k个子图的并等于G,且这些子图都是可平面图, 则k的最小值称为G的厚度。



厚度
用符号表示
θ(G)
表示什么


若G是可平面图,则θ(G)=

1



糙度的概念

G的不可平面子图的最大数目



糙度
用符号表示
ξ(G)
表示什么


欧拉迹的概念

经过每条边的迹



欧拉闭迹的概念

经过每条边的闭迹



Euler闭迹
又称
Euler回路
又称


Euler图的概念

存在Euler闭迹的图



若G是连通图,则下列命题等价: (1) {{c1::G是欧拉图。}} (2) {{c2::G的每个点的度是偶数。}} (3) {{c3::G的边集能划分为边不重的圈的并。}}





Euler图性质的推论: 连通图G{{c1::有Euler迹}}当且仅当{{c2::G最多有两个奇点}}。





一笔画问题的本质是什么

图是否存在Euler迹的问题



最优环游 的概念

在一个连通的没有负权的赋权图中找到一条包含每条边(允许重复)的边权之和最小的闭途径, 称为最优环游



中国邮递员问题 是求什么的

求最优环游



Hamilton路的概念

经过图中每一个点的路



Hamilton路简称:{{c1::H路}} Hamilton圈简称:{{c1::H圈}} Hamilton图简称:{{c1::H图}}





彼得森图
长什么样

这是什么图


H图的性质:若某个图是H图,则存在不等式:

对于该图的任意一个非空真子集S有:ω(G-S)≤|S|成立

Tutte定理(关于一般简单图的完美匹配):偶数阶图G有完美匹配当且仅当 o(G-S)≤|S|

Dirac定理:最小度数与H图的关系

当n≥3时,若δ(G)≥n/2成立,则G为H图



Ore定理:两个不相邻点的度数与H图的关系

当n≥3时,若G中任意两个不相邻的点u和v,满足△(u)+△(v)≥n,则G为H图。



闭图的概念

对于一个简单图来说,若这个图中所有满足△(u)+△(v)≥n的点u和点v都是相邻的,则 称这个图为闭图。

度数高的点特别集中,非常多的相邻。闭图用来形容这种图的特性。

Hamilton简单图中一定不存在割点{{c1::}}

对 错



关于闭图的定理: 若G1和G2都是点集V的闭图,那么

G1∩G2也是闭图



没有割边的3正则图一定完美匹配{{c1::}}

对 错
Tutte定理的推论


k正则偶图有一定有完美匹配{{c1::}}

对 错
这是Hall定理的推论,Hall定理又称婚姻定理,对于偶图中的X有:|N(S)| ≥ |S| 成立,则X到Y有完美匹配。


基础图的概念

将有向图的有向边改为边得到的无向图称为这个有向图的基础图



定向图的概念

讲无向图的每一条边改为有向边后得到的有向图称为无向图的定向图。



出度
用符号表示
d+(v)
表示什么


入度
用符号表示
d-(v)
表示什么


有向图点v的度 是什么

点v出度和入度之和



有向图
用字母表示
D
表示什么


有向图中入度、出度和边数之间的关系

有向图中入度之和=出度之和=边数



简单有向图的概念

无重边无自环的有向图



有向途经 的概念

从某个点出发,依次点边点边…点组成的有向序列



有向迹的概念

边不同的有向途经



u→v
表示什么
u到v可达
用符号表示


u↔v
表示什么
u和v可互达
用符号表示


强连通的概念

若对于有向图D来说,任意两个点之间都是互达的,则这个有向图是强连通的。



D是单向连通 的含义

对于D中任意两个点,都存在u→v或v→u成立,则称D是单向连通的。



有向图中的连通指的是什么{{c1::}}

弱连通 强连通 单向连通
在有向图中弱连通简称连通


弱连通的含义

若有向图的基础图是连通的,则称该有向图是弱连通的。



同一个有向图中 强连通,弱连通,单向连通的关系

强连通 的图⊂单向连通 的图⊂弱连通 的图



{{c1::有向图是强连通的}}当且仅当{{c2::有向图中含有所有顶点的有向闭途径}}





下列哪个词的含义与其他的不同{{c1::}}

路 通道 途径 通路



下列哪个词与别的含义不同{{c1::}}

迹 通道 通路 途径



迹和路的区别

迹是边不重复的途径,路是点不重复的途径。



环游的同义词{{c1::}}

闭途径 回路 闭迹 圈



回路的同义词{{c1::}}

闭迹 环游 闭途径 圈



回路和圈的区别是什么

回路是边不重复的闭途径,圈是点不重复的闭途径



下列哪个要求最低{{c1::}}

途径 迹 路 环游



闭迹的同义词{{c1::}}

回路 环游 圈 闭途径



闭途径的同义词{{c1::}}

环游 圈 闭迹 回路



环游是终点起点相同的{{c1::}}

通道 路 迹



回路是终点起点相同的{{c1::}}

迹 路 通道 通路



圈是终点起点相同的{{c1::}}

路 迹 通路



路是{{c1::}}不重复的途径

点 边



迹是{{c1::}}不重复的途径

边 点



回路是{{c1::}}不重复的环游

边 点



圈是{{c1::}}不重复的闭途径

点 边



强连通分支/单向连通分支/弱连通分支 的定义

D的子图D’是一个 强连通/单向连通/弱连通图 , 且D中不存在真包含D’的 强连通/单向连通/弱连通子图,(这个D’相当于是个“极大”的xx图) 则这个子图D’称为D的一个 强连通/单向连通/弱连通 分支。



有向图中每个点都位于至少一个,甚至更多个的强连通分支中{{c1::}}

错 对
每个点都位于且仅位于一个强连通分支中


所有的图都存在强连通定向图{{c1::}}

错 对



有向树的概念

若某棵树的基础图是树,则称这棵树为有向树



根树 的概念

若某棵树只有一个点的入度是0,其他点的入度均为1,则这棵树是一棵根数。

根树不等于有向树

树根的概念

根树中入度为0的顶点



树根 的概念
有向图
根数中出度为0的顶点



内点的概念

根树中除去树叶和树根的顶点



分支点的概念
有向图
有向树中的内点和根



有向树和无向树中关于“分支点”定义的差异

有向树:内点和根称为分支点 无向树:度大于1的点称为分支点



层数的概念
有向树
某个顶点到根的距离



高 的概念
有向树
所有顶点的最大层数



兄弟的概念
有向树
某几个顶点是同一个父亲的儿子



有序树的概念

同一层规定了顺序的根树

有序树不等于有向树

以v为根的子树 是什么

在根树中找到一个顶点v,以该顶点及其所有后代导出的子图



m元树的概念

在根树中,若每个分支点至多有m个儿子,则称该树为m元树

m元树就是计算机考研中的m叉树

m元完全树 的概念

若某棵树的所有分支点都有m个儿子,则称该树为m元完全树。



简述先根、中根、后根遍历

以先根遍历为例:根左右 1、遍历根 2、以先序遍历遍历左子树 3、以先序遍历遍历右子树 同样地,中根遍历:左根右;后根遍历:左右根。



带权二元树的概念

若对二元树的所有树叶赋权,则该树被称为带权二元树



二元树的权 的概念

对于一个带权二元树,每个树叶的权乘上该点的层数,再把每个树叶得到的值相加, 最后的和就是二元树的权。



最优树的概念

给定若干个实数,找出一个让二元树最小的权的树,使得这些实数成为这棵二元树的树叶的权, 那这个二元树称为最优树。



有向圈的概念

若对于某一个有向图D来说,存在一个子图, 这个子图的所有点的入度均大于0,或者 这个子图的所有点的出度均大于0, 则称D中存在有向圈。



唯一有向圈的概念

若有向图D连通,且其中的所有点均满足 出度=1,或 入度=1, 则称D存在唯一有向圈



回路=起点终点相同的{{c1::}}

迹 路
回路=闭迹


D是有向图,{{c1::D存在欧拉回路}}当且仅当{{c2::D连通,且D中的每个点的入度和出度都相等}}





D是有向图,{{c1::D存在欧拉迹}}当且仅当 {{c2::D连通且除了两个点以外,其他所有点入度和出度均相等, 这两个点中,一个点入度比出度大1,另一个出度比入度大1}}





对于任何图,连通度、边连通度、δ的关系

κ(G)≤λ(G)≤δ(G)



连通图中连通度、m和n的关系

κ (G) ≤⌊2m/n⌋



若δ(G)≥⌊n/2⌋能推出什么(两个)

1、G是连通图。(ppt中的一个引理) 2、δ(G)=λ(G),最小度数=边连通度(一个定理)



称两条(x,y)路是 内部不相交 或 独立的 是什么意思

这两条路只有首尾两个点是彼此的公共点



分离x与y的概念

x和y是G中的两个点,若存在一组点或一组边,使得删去它们后不存在x到y的路, 则称一组点或一组边分离x和y。



n阶完全偶图边数m与点数的不等关系

m≤⌊n2/4⌋



树的形心的权与n的关系

1、若树有一个形心,则形心的权小于n/2 2、若树有两个形心,则形心的权均等于n/2



同一连通图中各个基本回路的关系

任意基本回路都能表示为若干基本回路的对称差。



若x和y是两个不相邻点,则{{c2::分离x和y的最少点数}}等于{{c1::独立的(x,y)路的最大数目}}





设x和y是两个不同点,则{{c1::分离x和y的最小边数}}等于{{c2::边不重的(x,y)路的最大数目}}。





两个定理的区别: (1) 设x和y是图G中的两个{{c1::不相邻点}},则G中分离x和y的最少点数等于{{c2::独立}}的(x, y)路的最大数目。 (2) 设x和y是图G中的两个{{c1::不同点}},则G中分离x和y的最少边数等于{{c2::边不重}}的(x, y)路的最大数目。





一个非平凡图是k(k≥2)连通的,当且仅当 (图中任意一对点的关系)

G的任意两个不同顶点间至少存在k条独立的路



一个非平凡图是k(k≥2)边连通的,当且仅当 (图中任意两个点间的关系)

G的任意两个不同顶点间至少存在k条边不重的路



“Menger定理”: (1)一个非平凡图G是k (k≥2){{c2::连通}}的当且仅当G的任意两个不同顶点间至少存在k条{{c1::独立}}的路; (2)一个非平凡图G是k (k≥2){{c2::边连通}}的当且仅当G的任意两个不同顶点间至少存在k条{{c1::边不重}}的路





宽距离和宽直径分别描述了什么

宽距离描述了点对点的通信延迟, 宽距离描述了网络中最大的通信延迟。



Cw(x,y)
表示什么
x-y容器
用符号表示


容器
全称
x-y容器
简称


x-y容器是什么

G中独立的(x,y)路构成的路族



容器的宽度是什么

容器中独立的路的数量



容器的长度是什么

容器中最长路的长度



l (Cw(x, y))
表示什么
x-y容器的长度
用符号表示


彼得森图的点色数和边色数分别为多少

点色数:3 边色数:4



具有Hamilton圈的3正则图可以1-因子分解{{c1::}}

对 错



闭包的定义

若一个与G有相同点集的闭图Ĝ,使G ⊂ Ĝ,且对异于Ĝ的任何图H,若有G ⊂ H ⊂ Ĝ,则H不是闭图,则称Ĝ是G的闭包



图的闭图的构造方法

将图中度数之和至少是图的顶点个数的非邻接顶点对递归地连接起来,直到不再有这样的顶点对存在时为止。



任意图的闭图都是唯一的{{c1::}}

对 错



一个图的闭图一定是完全图{{c1::}}

错 对



设G是n阶简单图,{{c3::u和v是G中不相邻的顶点}},且满足 {{c3::d(u)+d(v)≥n}}, 则{{c2::G是H图}}的充要条件是{{c1::G+uv为H图}}。



设图G为n阶简单图,若G中任意两个不相邻顶点u与v 满足d(u)+d(v)≥n-1,则G是连通图且d(G)≤2

定理 (Bondy)关于闭包: {{c1::一个简单图G是H图}}当且仅当{{c2::它的闭包是H图}}





度序列判定定理能判定什么
Hamilton图
根据图G的度序列,判定图G是否为H图



度极大的非哈密尔顿图的定义

某个图的度序列不弱于其他的非H图



dw(x,y)
表示什么
x与y的w宽距离
用符号表示


x与y之间的w宽距离的定义

定义x与y间所有宽度为w的容器的长度的最小值



该图中u与v之间的3宽距离为多少

3



dw(G)
表示什么
图G的w宽直径
用符号表示


图G的w宽直径的定义

设G是w连通的,G的所有点对间的w宽距离的最大值



图G的1宽距离和1宽直径分别表示什么

1宽距离:(普通)距离 1宽直径:(普通)直径



若图G的w宽直径存在,则图G的1,2,3…w宽直径之间的关系

d(G)=d1(G)≤d2(G)≤d3(G)…≤dw(G)



在求中国邮递员问题时添加边得到的欧拉图中, 使得图G
具有最小权值的充要条件是什么

(1) G的每一条边最多被添加一次; (2) 对于G的每个圈来说,新添加的边的总权值不超过该圈原有的总权值的一半。



简述非欧拉图求最优环游的方法

step1、连接各个奇点,每条边最多连接一次,使其成为欧拉图。 step2、判断每个圈是否是新添加的边的权值大于原有权值的一半,若是,则交换重复边和非重复边。 反之,继续。 step3、求出新产生的欧拉图的欧拉回路。



设图G为n阶简单图,若G中任意两个不相邻顶点u与v 满足d(u)+d(v)≥n-1,则

G是连通图且d(G)≤2

这是一个定理

临界图的定义

对图G的任意真子图H都有χ(H)< χ(G)的图



k临界图的定义

色数为k的临界图称为k临界图



对于一个k色图,不一定有k临界子图{{c1::}}

错 对
k色图均有k临界子图


临界图不一定是连通图{{c1::}}

错 对
临界图均是简单连通图


唯一可着色图的定义

设简单标号图G的色数是k,如果在任意的k正常点着色方案下,导出的顶点集合划分唯一, 称G是唯一k可着色图,简称唯一可着色图



对于唯一可着色图,在G的任意一种k着色中,G的任意两个色组的并导出的子图是连通的{{c1::}}

对 错



不含三角形的k色图的定义

若图G的色数是k,且G中不含有三角形,称G是一个不含三角形的k色图



空图都是完美图{{c1::}}

对 错



完全图都是完美图{{c1::}}

对 错



偶图都是完美图{{c1::}}

对 错



偶图的补图都是完美图{{c1::}}

对 错



图G是完美图当且仅当G的补图是完美图{{c1::}}

对 错



点独立集/独立集的定义

图中一些互不相邻的点构成的点子集



最大独立集的定义

图G中含点数最多的独立集称为G的最大独立集



点独立数/独立数的定义

最大独立集所含的顶点数称为G的点独立数



α(G),α
表示什么
独立数/点独立数
用符号表示


点独立集和覆盖的关系

同一个图的点独立集是覆盖的补集



S是G的独立集当且仅当S是G的团{{c1::}}

错 对
S是G的独立集当且仅当S是G的补图的团


最大独立集和最小覆盖点数的关系

同一个图中,最大独立集和最小覆盖的顶点数之和等于n



完全分类的概念

设S是简单图G的顶点集合的一个划分。如果S的每个子集在G中的导出子图均是完全图,称S是G的一个完全分类



若图中两个不同点u与v间存在途径,则u与v间必存在路{{c1::}}

对 错



若过点u存在闭迹,则过点u必存在圈{{c1::}}

对 错



树不一定是偶图{{c1::}}

错 对
树一定都是偶图


若图G的每个顶点的度数均为偶数,则G没有割边{{c1::}}

对 错
图G是欧拉图


无环非平凡图至少有几个点不是割点

2个



有割边的图一定有割点{{c1::}}

对 错



有割点的图一定有割边{{c1::}}

错 对
有割点的图不一定有割边


k连通图一定是k边连通图{{c1::}}

对 错



k边连通图一定是k连通图{{c1::}}

错 对
k连通图一定是k边连通图,但k边连通图不一定是k连通图。


Kn(n≥3且n为偶数)是欧拉图{{c1::}}

错 对
Kn(n≥3且n为奇数)是欧拉图


Kn(n≥3且n为奇数)是欧拉图{{c1::}}

对 错



偶数阶超立方体Qn是欧拉图{{c1::}}

错 对
当n为偶数时,超立方体为欧拉图


当n为偶数时,超立方体Qn为欧拉图{{c1::}}

对 错



Km,n中m和n满足什么条件时Km,n为欧拉图

m和n均为偶数时,Km,n为欧拉图



欧拉图中没有割边{{c1::}}

对 错



欧拉图中没有割点{{c1::}}

错 对
欧拉图中没有割边,但是可能有割点


Kn(n≥3)是哈密尔顿图{{c1::}}

对 错



Qn(n≥2)是哈密尔顿图{{c1::}}

对 错



Km,n中m和n满足什么条件时Km,n是哈密尔顿图

m=n≥2时Km,n是哈密尔顿图



若连通图不是2-连通的,则G不是H图{{c1::}}

对 错



H图中没有割边{{c1::}}

对 错



H图中没有割点{{c1::}}

错 对
如果H图中有自环,则可能存在割点。


哈密尔顿简单图一定不存在割边与割点{{c1::}}

对 错



超立方体Qn(n≥1)不一定有完美匹配{{c1::}}

错 对
超立方体一定有完美匹配


非平凡树至少存在一个完美匹配{{c1::}}

错 对



非平凡树可能不存在完美匹配{{c1::}}

对 错



非平凡树至多存在一个完美匹配{{c1::}}

对 错



Tutte(塔特)定理: 对于{{c1::偶图}}G有完美匹配,当且仅当o(G-S)≤|S|对任意S⊂V(G)成立





1-因子的{{c1::边集}}构成一个{{c2::完美匹配}}, 2-因子的{{c1::连通分支}}构成一个{{c2::圈}}





彼得森图不能被1-因子分解{{c1::}}

对 错



奇数阶图不能1-因子分解{{c1::}}

对 错



若一个2-因子是连通的,则它是一个H圈{{c1::}}

对 错



2-可因子化的图存在点的度数不为偶数{{c1::}}

错 对
2-可因子化的图的所有点的度数一定是偶数。


K2n+1 2-因子化后每个2-因子都是H圈{{c1::}}

对 错



任何3-正则图都可以分解为一个1-因子和一个2-因子的并{{c1::}}

错 对
没有割边的3-正则图才可以


每个4-连通的极大平面图必为H图{{c1::}}

对 错



阶数至少为3的极大平面图必为H图{{c1::}}

对 错



若G是外可平面图,且n≥7,则G的补图

一定不是外可平面图



若G
是平面图的对偶图,则G*一定连通{{c1::}}

对 错



G是可平面的,当且仅当它不含K5或K3,3同胚的子图{{c1::}}

对 错
G是可平面图的充分必要条件是G不含子图K5或K3,3。 这个判断是错误的。


若G是{{c2::简单}}可平面图且n≥{{c1::9}},则G的补图不是可平面图



若G是外可平面图,且n≥7,则G的补图一定不是外可平面图

若G是简单可平面图且n≥9,则G的补图

不是可平面图



彼得森图是可平面图{{c1::}}

错 对



M(D)
表示什么
有向图D的关联矩阵
用符号表示


A(D)
表示什么
有向图D的邻接矩阵
用符号表示


对于一般的无环图χ’满足什么

χ’(G)≥△(G)



若G是偶图,则χ(G)={{c1::2}}





若G是简单图,则χ(G)=△或χ(G)=△+1{{c1::}}

错 对
若G是简单图,则χ’(G)=△或χ’(G)=△+1


Kn的边色数

当n为偶数时χ’(G)=n-1, 当n为奇数时χ’(G)=n



奇圈的边色数和点色数

奇圈的边色数和点色数都为3



对任意简单平面图,均有χ≤4{{c1::}}

错 对
对任意简单平面图,均有χ≤5


若δ≥2则图中必有圈{{c1::}}

对 错



若G不连通,则d((\overline{G}))

d((\overline{G}))≤2



若v是简单图G的割点,则v也是(\overline{G})的割点{{c1::}}

错 对
v不是(\overline{G})的割点


恰有两个非割点的连通图是

一条路



若A是标号图G的推广邻接矩阵,则A2的元素aii(2)表示什么

vi的度数



若A是标号图G的推广邻接矩阵,则A3的元素aii(3)表示什么

含vi的三角形数的两倍


  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值