【图论及其运用 — 电子科技大学】(一)第一章 图的基本概念

一、图的概念与图论模型

(一)、图的定义与图论模型

一个图是一个序偶 < V , E > <V,E> <V,E>,记为 G = ( V , E ) G=(V,E) G=(V,E), 其中:(vertex,edge)

  • (1) V V V 是一个有限的非空集合,称为顶点集合, 其元素称为顶点或点。用 ∣ V ∣ |V| V 表示顶点数;
  • (2) E E E 是由 V V V 中的点组成的无序对构成的集合,称为边集,其元素称为边,且同一点对在 E E E 中可以重复出现多次。用 ∣ E ∣ |E| E 表示边数。

注: 图G的顶点数(或阶数)和边数可分别用符号n(G) 和m(G)表示。连接两个相同顶点的边的条数,叫做边的重数。重数大于1的边称为重边。端点重合为一点的边称为环。

图的相关概念

名词概念
有限图顶点集和边集都有限的图称为有限图;
平凡图只有一个顶点而无边的图称为平凡图;其他所有的图都称为非平凡图
空图边集为空的图称为空图;
n阶图顶点数为n的图称为n阶图;
(n, m) 图顶点数为n,边数为m的图称为(n, m) 图;
边的重数连接两个相同顶点的边的条数称为边的重数;重数大于1的边称为重边;
端点重合为一点的边称为环;
简单图无环无重边的图称为简单图;其余的图称为复合图;
顶点u与v相邻接顶点u与v间有边相连接;其中u与v称为该边的两个端点;
顶点u与边e相关联顶点u是边e的端点;
e 1 e_1 e1与边 e 2 e_2 e2相邻接 e 1 e_1 e1与边 e 2 e_2 e2有公共端点;
孤立点不与任何边相关联的点;

(二)、图的同构

定义: 设有两个图 G 1 = ( V 1 , E 1 ) G_1=(V_1, E_1) G1=(V1,E1) G 2 = ( V 2 , E 2 ) G_2=(V_2, E_2) G2=(V2,E2), 若在其顶点集合间存在双射(即存在一一对应),使得边之间存在如下关系:设 u 1 ↔ u 2    v 1 ↔ v 2 , u 1 , v 1 ∈ V 1 , u 2 , v 2 ∈ V 2 ; u 1 v 1 ∈ E 1 u_1↔u_2 ~~ v_1↔v_2, u_1,v_1 \in V_1, u_2,v_2 \in V_2; u_1v_1 \in E_1 u1u2  v1v2,u1,v1V1,u2,v2V2;u1v1E1,当且仅当 u 2 v 2 ∈ E 2 u_2v_2 \in E_2 u2v2E2, 且 u 1 v 1 u_1v_1 u1v1 u 2 v 2 u_2v_2 u2v2的重数相同。称 G 1 G_1 G1 G 2 G_2 G2同构,记为: G 1 ≅ G 2 G_1\cong G_2 G1G2

关于图的同构(Isomorphic),最简单的例子就是五边形和五角星了:

上图中,G1和G2为同构的,因为:

(1)从G1的结点到G2的结点,存在一个一对一的映上函数 f (one - to - one and onto function f )

(2)从G1的边到G2的边,存在一个一对一的映上函数 g (one - to - one and onto function g )

G1中,边e1与结点a,b相关联,当且仅当(if and only if) G2中边 g(e) 与结点 f(a) 和 f(b) 相关联(E1和结点A,B相关联)。若满足此条件,函数 f 和 g 称为从G1到G2的同构映射(Isomorphism)

1. 判断两图同构
对于某个顺序,如果两个图是同构的,则两个图的邻接矩阵是相同的:

这两个矩阵对应的是上面的两个图

2. 判断两图不同构
找到一个特性,是G1具有,而G2不具有的,这个特性称为不变量(invariant),或不变条件

如果G1和G2同构,则两个图都具有此特性,也就是说,如果G1和G2同构,G1具有某性质,则G2也具有此性质

以此图为例,这两个图是不同构的,因为G1有5条边,G2有6条边。

由定义可以得到图同构的几个必要条件:

(1) 顶点数相同;(2) 边数相同;(3) 关联边数相同的顶点个数相同。

图不同构的充分条件:① 顶点数不相同;② 边数不相同;③ 度数相等的顶点个数不相同。(满足一个即否定)

判定图的同构是很困难的,属于NP完全问题。对于规模不大的两个图,判定其是否同构,可以采用观察加推证的方法。





作业:P29—P30 3, 4, 5, 6

(三)、完全图、偶图与补图

(1)每两个不同的顶点之间都有一条边相连的简单图称为完全图 .

在同构意义下, n n n 个顶点的完全图只有一个,记为 K n K_n Kn,常称为n阶完全图

容易求出: m ( K n ) = 1 2 n ( n − 1 ) m\left(K_n\right)=\frac12n\left(n-1\right) m(Kn)=21n(n1) , 即 m ( K n ) = n − 1 + n − 2 + n − 3 + . . . + 1 m\left(K_n\right)= n - 1 + n - 2 + n - 3 + ... + 1 m(Kn)=n1+n2+n3+...+1

(2)所谓具有二分类 ( X , Y ) (X, Y) (X,Y)的偶图(或二部图): 是指一个图,它的点集可以分解为两个(非空)子集 X X X Y Y Y,使得每条边的一个端点在 X X X中,另一个端点在 Y Y Y中.

完全偶图: 是指具有二分类 ( X , Y ) (X, Y) (X,Y) 的简单偶图,其中 X X X的每个顶点与 Y Y Y的每个顶点相连,若 ∣ X ∣ = m , ∣ Y ∣ = n |X|=m,|Y|=n X=mY=n,则这样的偶图记为 K m , n K_{m, n} Km,n

(3)对于一个简单图 G = ( V , E ) G =(V, E) G=(V,E),令集合

E 1 = { u v ∣ u ≠ v , u , v ∈ V } E_1=\left\{uv|u\neq v,u,v\in V\right\} E1={uvu=v,u,vV}

则称图 H = ( V , E 1 \ E ) H=(V,E_{1}\backslash E) H=(V,E1\E) G G G 的补图,记为 H = G ‾ H=\overline{G} H=G

补图是相对于完全图定义的,图 G G G补图,通俗的来讲就是完全图 Kn 去除 G 的边集后得到的图 Kn-G

在图论里面,一个图G的补图:有着跟G相同的顶点集,G里面没有形成的边在补图里有。


这两个补图结合起来就是下面这个形状:


如果图G与其补图同构,则称G为自补图。

定理: n n n阶图 G G G是自补图( G ≅ G ‾ G\cong\overline{G} GG), 则有: n = 0 , 1 ( mod ⁡ 4 ) n=0,1(\operatorname{mod}4) n=0,1(mod4)

注: 自补图,G 与 补图同构,边数相同。


利用自补图的性质: n = 0 , 1 ( mod ⁡ 4 ) n=0,1(\operatorname{mod}4) n=0,1(mod4) ,判断下面那些模 4 等于 0 或 1 即可。


(四)、顶点的度与图的度序列

(1)顶点的度及其性质

G G G 的顶点 v v v 的度 d ( v ) d(v) d(v) 是指 G G G 中与 v v v 关联的边的数目,每个环计算两次。

分别用 δ ( G ) δ(G) δ(G) Δ ( G ) Δ(G) Δ(G) 表示图 G G G 的最小与最大度。

奇数度的顶点称为奇点,偶数度的顶点称偶点。

G = ( V , E ) G = (V, E) G=(V,E)为简单图,如果对所有 v ∈ V v \in V vV,有 d ( v ) = k d(v) = k d(v)=k,称图 G G G k k k-正则图,完全图和完全偶图 K n , n K_{n,n} Kn,n 均是正则图, K n K_n Kn 的完全同,同时也表示 n − 1 n - 1 n1 正则图, K n , n K_{n,n} Kn,n 表示完全偶图的两个点集数量都为 n n n,也是 n − 1 n-1 n1 正则图。

定理: G = ( V , E ) G= (V, E) G=(V,E) 中所有顶点的度的和等于边数 m m m 2 2 2 倍,即:(该定理还有一个名字叫握手定理)

∑ v ∈ V ( G ) d ( v ) = 2 m \sum_{\begin{array}{c}v\in V(G)\\\end{array}}d\left(v\right)=2m vV(G)d(v)=2m

证明: 由顶点度的定义知:图中每条边给图的总度数贡献2度,所以,总度数等于边数2倍。

推论 1 在任何图中,奇点个数为偶数。(奇点: 度为奇数的点)

证明: V 1 , V 2 V_1, V_2 V1,V2分别是 G G G中奇点集和偶点集, 则由握手定理有: ∑ v ∈ V 1 d ( v ) + ∑ v ∈ V 2 d ( v ) = ∑ v ∈ V d ( v ) . \color{red}\sum_{v \in V_{1}}d\left(v\right)+\sum_{v\in V_{2}}d\left(v\right)=\sum_{v\in V}d\left(v\right). vV1d(v)+vV2d(v)=vVd(v).

是偶数,由于 ∑ v ∈ V 2 d ( v ) \sum_{v\in V_2}d\left(v\right) vV2d(v) 是偶数,所以 ∑ v ∈ V 1 d ( v ) \sum_{v\in V_1}d\left(v\right) vV1d(v) 是偶数,于是 ∣ V 1 ∣ |V_1| V1 是偶数 (因为所有度之和为偶数,偶点集度之和肯定为偶数,偶点集与奇点集的度之和为偶数,所以奇点集的个数一定是奇数)

推论 2 正则图的阶数和度数不同时正则图度数为奇数,即 d ( v ) d(v) d(v) 为奇数 ,也即 k 正则图中的 k 为奇数,并且顶点数为 偶数。(设 G = ( V , E ) G = (V, E) G=(V,E)为简单图,如果对所有 v ∈ V v \in V vV,有 d ( v ) = k d(v) = k d(v)=k,称图 G G G k k k-正则图 )

证明 : G G G k k k-正则图,若 k k k为奇数,则由推论 1 知正则图 G G G的点数必为偶数。( k k k G G G中每个顶点度数,阶数指 G G G 中的顶点数)

k k k 为偶数时,点数可偶可奇



(2)图的度序列及其性质
一个图G的各个点的度 d 1 , d 2 , … , d n d_1, d_2,…, d_n d1,d2,,dn构成的非负整数组 ( d 1 , d 2 , … , d n d_1, d_2,…, d_n d1,d2,,dn) 称为 G G G的度序列(或者度分布) 。

任意一个图G对应唯一一个度序列,图的度序列是刻画图的特征的重要“拓扑不变量”。

图 G 的“拓扑不变量”是指与图G有关的一个数或数组(向量)。它对于与图G同构的所有图来说,不会发生改变。

一个图 G G G 可以对应很多拓扑不变量。如果某组不变量可完全决定一个图,称它为不变量的完全集。

定理: 非负整数组( d 1 , d 2 , … , d n d_1, d_2,…, d_n d1,d2,,dn)是图的度序列的充分必要条件是: ∑ i = 1 n d i \sum_{i=1}^nd_i i=1ndi 为偶数。

证明:
必要性 由握手定理立即得到。

充分性证明: 如果 ∑ i = 1 n d i \sum_{i=1}^nd_i i=1ndi 为偶数,则数组中为奇数的数字个数必为偶数。按照如下方式作图 G G G:(1)若 d i d_i di 为偶数,则在与之对应的点作 d i / 2 d_i/2 di/2 个环(每个环算两次度);(2)对于剩下的偶数个奇数,两两顶点先连一条边(这样每个奇点就变成了偶点),然后在每个顶点画 ( d j − 1 ) / 2 (d_j-1)/2 (dj1)/2 个环。该图的度序列就是已知数组。(下面是一个案例)

一个非负数组如果是某简单图的度序列,我们称它为可图序列,简称图序列。


关于图序列,主要研究3个问题:

定理: 非负整数组
π = ( d 1 , d 2 , ⋯   , d n ) , d 1 ≥ d 2 ≥ ⋯ ≥ d n , ∑ i = 1 n d i = 2 m        注意公式中数组元素为降序排列 \color{red}{\pi=(d_1,d_2,\cdots,d_n),d_1\geq d_2\geq\cdots\geq d_n,\sum_{i=1}^nd_i=2m} ~~~~~~~ \text{注意公式中数组元素为降序排列} π=(d1,d2,,dn),d1d2dn,i=1ndi=2m       注意公式中数组元素为降序排列

是图序列的充分必要条件是:
π 1 = ( d 2 − 1 , d 3 − 1 , ⋯   , d d 1 + 1 − 1 , d d 1 + 2 , ⋯   , d n )         注意 d 1 不变 \color{red}{\begin{aligned}\pi_1=(d_2-1,d_3-1,\cdots,d_{d_1+1}-1,d_{d_1+2},\cdots,d_n) ~~~~~~~ \text{注意$d_1$不变} \end{aligned}} π1=(d21,d31,,dd1+11,dd1+2,,dn)       注意d1不变


π 1 \pi_1 π1 是对 π \pi π 去掉第一个点,后面 d 1 d_1 d1 个点每个点度减去一得到, π 2 \pi_2 π2 是对 π 1 \pi_1 π1 去掉第一个点,并对后面 d 2 d_2 d2 个点每个点度减去一得到,…

步骤:

  • ① 对度进行从大到小排序
  • ② 去掉第一个点,将后面 d 1 d_1 d1 个点减一
  • ③ 循环上述操作

对应的简单图,则需要回推


下面这个定理了解即可


(五) 图的频序列及其性质

定理: 一个简单图 G G G n n n个点的度不能互不相同

证明: 因为图 G G G为简单图,所以: Δ ( G ) ≤ n − 1 \Delta (G)≤n-1 Δ(G)n1

定义: n n n阶图 G G G的各点的度取 s s s个不同的非负整数 d 1 , d 2 , . . . , d s . d_1,d_2,...,d_s. d1,d2,...,ds.。又设度为 d i d_i di的点有 b i b_i bi ( i = 1 , 2 , … , s ) (i = 1,2,…,s) (i=1,2,,s),则
∑ i = 1 s b i = n \color{red}\sum_{i=1}^{s}b_i=n i=1sbi=n

故非整数组( b 1 , b 2 , . . . , b s b_1,b_2,...,b_s b1,b2,...,bs)是 n n n的一个划分,称为 G G G的频序列。

定理 5 一个 n n n 阶图 G 和它的补图 G ˉ \bar{G} Gˉ 有相同的频序列

证明: 设图 G G G的任一顶点 v v v的度数为 k k k , 则该顶点在补图中的度数为 n − 1 − k n-1-k n1k。因此:在 G G G中有 b b b个度数为 k k k的顶点,则在补图中就有 b b b个度数为 n − 1 − k n-1-k n1k个顶点。


作业 P29—P30 8, 9, 10, 11


二、子图、图运算、路与连通性

(一)、子图的相关概念

1、子图

简单地说,图G的任意一部分(包括本身)都称为是图G的的一个子图。

定义 1 如果 V ( H ) ⊆ V ( G ) , E ( H ) ⊆ E ( G ) \color{red}\left.\left.V\left(H\right.\right)\subseteq V\left(G\right),E\left(H\right.\right)\subseteq E\left(G\right) V(H)V(G),E(H)E(G) H H H中边的重数不超过 G G G中对应边的条数,则称 H H H G G G的子图,记为 H ⊆ G \color{green}{H\subseteq G} HG

H ⊆ G , H ≠ G H\subseteq G, H \neq G HG,H=G 时,称 H H H G G G的真子图,记为 H ⊂ G H\subset G HG

2、点与边的导出子图

(1) 图 G G G的顶点导出子图

定义2 如果 V ′ ⊆ V ( G ) V^{\prime}\subseteq V\left(G\right.) VV(G) ,则以 V ′ V^{\prime} V 为顶点集,以两个端点均在 V ′ V^{\prime} V 中的边集组成的图,称为图 G G G的点导出子图。记为: G [ V ′ ] \color{red}G\left[V^{\prime}\right] G[V]

(2) 图 G G G的边导出子图

定义 3 如果 E ′ ⊆ E ( G ) E^{\prime}\subseteq E\left(G\right.) EE(G),则以 E ′ E^{\prime} E 为边集,以 E ′ E^{\prime} E 中边的所有端点为顶点集组成的图,称为图 G G G 的边导出子图。记为: G [ E ′ ] \color{red}G\left[E^{\prime}\right] G[E]

3、图的生成子图

定义3 如果图 G G G的一个子图 包含 G G G的所有顶点,称该子图为 G G G的一个生成子图

定理: 简单图 G = ( n , m ) G=(n,m) G=(n,m)的所有生成子图个数为 2 m \color{red}2^m 2m(即 C m 0 + C m 1 + C m 2 + . . . + C m m C_m^0 + C_m^1 + C_m^2 + ... + C_m^m Cm0+Cm1+Cm2+...+Cmm

(二)、图运算

在图论中,将两个或更多的图按照某种方式合并,或者对一个图作某种形式的操作,可以得到很有意义的新图。将图合并或对一个图进行操作,称为图运算。图运算形式很多。

1、图的删点、删边运算

(1)、图的删点运算

V ′ ⊆ V ( G ′ ) \color{red}V^{\prime}\subseteq V\left(G^{\prime}\right) VV(G) ,在 G G G 中删去 V ′ V^{\prime} V 中的顶点和 G G G 中与之关联的所有边的操作,称为删点运算。记为 G − V ′ \color{red}G-V^{\prime} GV

特别地,如果 V ′ = { v } V^{\prime} = \{v\} V={v},则记为 G − v \color{red}G-v Gv.

(2)、图的删边运算

E ′ ⊆ E ( G ) \color{red}E^{\prime}\subseteq E\left(G\right.) EE(G) ,在 G G G 中删去 E ′ E^{\prime} E 中的所有边的操作,称为删边运算。记为 G − E ′ \color{red}G - E^{\prime} GE

特别地,如果 E ′ = { e } E^{\prime} = \{e\} E={e},则记为 G − e . \color{red}G-e. Ge.

注意:删边操作后,边两边的点依然还在,删点操作,则会删除一同关联得边

2、图的并运算

G 1 , G 2 \color{red}G_1, G_2 G1,G2 G G G的两个子图, G 1 G_1 G1 G 2 G_2 G2并是指由 V ( G 1 ) ∪ V ( G 2 ) V\left(G_{1}\right)\cup V\left(G_{2}\right) V(G1)V(G2) 为顶点集,以 E ( G 1 ) ∪ E ( G 2 ) E (G_1)\cup E(G_2) E(G1)E(G2) 为边集组成的子图。记为: G 1 ∪ G 2 G_1\cup G_2 G1G2

特别是,如果 G 1 , G 2 G_1,G_2 G1,G2不相交(没有公共顶点),称它们的并为直接并,可以记为: G 1 + G 2 \color{red}G_1 + G_2 G1+G2

3、图的交运算

G 1 , G 2 G_1, G_2 G1,G2 G G G的两个子图, G 1 G_1 G1 G 2 G_2 G2交是指由 V ( G 1 ) ∩ V ( G 2 ) V\left(G_{1}\right)\cap V\left(G_{2}\right) V(G1)V(G2) 为顶点集,以 E ( G 1 ) ∩ E ( G 2 ) E (G_1)\cap E(G_2) E(G1)E(G2) 为边集组成的子图。记为: G 1 ∩ G 2 \color{red}G_1\cap G_2 G1G2

4、图的差运算

G 1 , G 2 G_1, G_2 G1,G2 G G G的两个子图, G 1 G_1 G1 G 2 G_2 G2的差是指从 G 1 G_1 G1中删去 G 2 G_2 G2中的边得到的新图。记为 G 1 − G 2 \color{red}G_1-G_2 G1G2.

5、图的对称差运算(或环和运算)

G 1 , G 2 \color{red}G_1, G_2 G1,G2 G G G的两个子图, G 1 G_1 G1 G 2 G_2 G2 的对称差定义为:
G 1 Δ G 2 = ( G 1 ∪ G 2 ) − ( G 1 ∩ G 2 ) G_1\Delta G_2=(G_1\cup G_2)-(G_1\cap G_2) G1ΔG2=(G1G2)(G1G2)


例题

6、图的联运算

G 1 , G 2 G_1,G_2 G1,G2是两个不相交的图,作 G 1 + G 2 \color{red}G_1+G_2 G1+G2,并且将 G 1 G_1 G1中每个顶点和 G 2 G_2 G2中的每个顶点连接,这样得到的新图称为 G 1 G_1 G1 G 2 G_2 G2的联图。记为 : G 1 ∨ G 2 \color{red}G_1\vee G_2 G1G2

因此: K 1 ∨ K 4 = K 5 , K 2 ∨ K 3 = K 5 K_1 \vee K_4 = K_5, K_2 \vee K_3 = K_5 K1K4=K5,K2K3=K5,同理 K 6 = K 1 ∨ K 5 = K 2 ∨ K 4 = K 3 ∨ K 3 K_6 = K_1 \vee K_5 = K_2 \vee K_4 = K_3 \vee K_3 K6=K1K5=K2K4=K3K3


7、图的积图

G 1 = ( V 1 , E 1 ) , G 2 = ( V 2 , E 2 ) , G_1=(V_1,E_1),G_2=(V_2,E_2), G1=(V1,E1),G2=(V2,E2), 是两个图。对点集 V = V 1 × V 2 V=V_1 \times V_2 V=V1×V2 的任意两个点 u = ( u 1 , u 2 ) u=(u_1, u_2) u=(u1,u2) v = ( v 1 , v 2 ) , v=(v_1, v_2), v=(v1,v2), ( u 1 = v 1 (u_1=v_1 (u1=v1 u 2 u_2 u2 adj v 2 ) v_2) v2) ( u 2 = v 2 (u_2=v_2 (u2=v2 u 1 u_1 u1 adj v 1 ) v_1) v1)时,把 u u u v v v相连。如此得到的新图称为 G 1 G_1 G1 G 2 G_2 G2的积图。记为 G = G 1 × G 2 \color{red}G=G_1\times G_2 G=G1×G2

注: u 2 u_2 u2 adj v 2 v_2 v2 表示, u 2 u_2 u2 v 2 v_2 v2 相邻 (adjacent:相邻的)

图中: 组合出所有点 (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5),然后将满足定义的点连接

边的数目为: n 1 m 2 + n 2 m 1 n_1m_2 + n_2m_1 n1m2+n2m1


8、图的合成图

G 1 = ( V 1 , E 1 ) , G 2 = ( V 2 , E 2 ) , G_1=(V_1,E_1),G_2=(V_2,E_2), G1=(V1,E1),G2=(V2,E2), 是两个图。对点集 V = V 1 × V 2 V=V_1 \times V_2 V=V1×V2 的任意两个点 u = ( u 1 , u 2 ) u=(u_1, u_2) u=(u1,u2) v = ( v 1 , v 2 ) v=(v_1, v_2) v=(v1,v2), 当 ( u 1 u_1 u1 adj v 1 ) v_1) v1) ( u 1 = v 1 (u_1=v_1 (u1=v1 u 2 u_2 u2 adj v 2 ) v_2) v2)时,把 u u u v v v相连。如此得到的新图称为 G 1 G_1 G1 G 2 G_2 G2的合成图。记为 G  =  G 1 [ G 2 ] \color{red}G\text{ = }G_1[G_2] G = G1[G2]

与上述图的积图不同的是,此定义只需满足第一个点对相邻,第二个点随意,或第一个点对相同,第二个点对相邻
边的数目为: n 1 m 2 + n 2 m 1 n_1m_2 + n_2m_1 n1m2+n2m1

合成图的边数目为: n 1 m 2 + n 2 2 m 1 n_1m_2 + n_2^2m_1 n1m2+n22m1,因为 ( u 1 u_1 u1 adj v 1 ) v_1) v1) n 2 2 m 1 n_2^2m_1 n22m1 条边, ( u 1 = v 1 (u_1=v_1 (u1=v1 u 2 u_2 u2 adj v 2 ) v_2) v2) n 1 m 2 n_1m_2 n1m2 条边


“超立方体” 可以采用积图来递归构造。定义如下:

(1) 1 方体 Q 1 = K 2 \color{red}Q_{1}=K_{2} Q1=K2
(2) n n n 方体定义为: Q n = K 2 × Q n − 1 \color{red}Q_n=K_2\times Q_{n-1} Qn=K2×Qn1
(3) 所有的 n n n 方体都是偶图

构建 n n n 方体的方法,对所有点进行二进制编码。 Q 1 Q_1 Q1 用 0,1, Q 2 Q_2 Q2 用 00,01,10,11, Q 3 Q_3 Q3 用 000, 001, 010, 011, 100, 101, 110, 111,依次类推,n 方体每上升一位,二进制编码增加一位。构建 Q n Q_n Qn,需要画两个 Q n − 1 Q_{n-1} Qn1 方体,然后二进制编码位数为 n,并在二进制表示中,将只有一处不同的连接起来。

比如: Q 2 Q_2 Q2 Q 3 Q_3 Q3

总结:

  • ① 任何 n 方体,都能够构建
  • ② n 方体, 2 n 2^n 2n 个点,每个点的度数为 n
  • ③ 结构优点:可靠性高

9、图的联合

G 1 G_1 G1的一个顶点和 G 2 G_2 G2的一个顶点粘合在一起后得到的新图称为 G 1 G_1 G1 G 2 G_2 G2的联合。记为: G 1 = G 1 ∙ G 2 \color{red}G_1=G_1\bullet G_2 G1=G1G2


积图为 n 1 m 2 + n 2 m 1 n_1m_2 + n_2m_1 n1m2+n2m1 是因为 ( u 1 = v 1 (u_1=v_1 (u1=v1 u 2 u_2 u2 adj v 2 ) v_2) v2) n 1 m 2 n_1m_2 n1m2 条边, ( u 2 = v 2 (u_2=v_2 (u2=v2 u 1 u_1 u1 adj v 1 ) v_1) v1) n 2 m 1 n_2m_1 n2m1 条边。

合成图为 n 1 m 2 + n 2 2 m 1 n_1m_2 + n_2^2m_1 n1m2+n22m1,是因为 ( u 1 u_1 u1 adj v 1 ) v_1) v1) n 2 2 m 1 n_2^2m_1 n22m1 条边, ( u 1 = v 1 (u_1=v_1 (u1=v1 u 2 u_2 u2 adj v 2 ) v_2) v2) n 1 m 2 n_1m_2 n1m2 条边


(三)、路与连通性

对图的路与连通性进行研究,在计算机网络研究中有十分重要的意义。因为网络的抽象就是一个图。研究网络信息传递,信息寻径是主要问题之一,这恰对应于图中路的研究;在网络研究中,可靠性也是主要问题之一,它与图的连通性问题相对应。

1、路与连通性的相关概念

(1)、图中的途径
G G G的一条 途径(或通道或通路) 是指一个有限非空序列 w = v 0 e 1 v 1 e 2 v 2 … e k v k \color{red}w= v_0 e_1 v_1 e_2 v_2…e_k v_k w=v0e1v1e2v2ekvk,它的项交替地为顶点和边,使得 1 ≤ i ≤ k {1\leq i\leq k} 1ik e i e_i ei 的端点是 v i − 1 v_{i-1} vi1 v i v_i vi. (这里的顶点和边可以重复)

途径中边数称为途径的长度; v 0 , v k v_0,v_k v0,vk 分别称为途径的起点与终点,其余顶点称为途径的内部点。

(2)、图中的迹

边不重复的途径称为图的一条迹。(顶点可以重复)
首尾顶点重复的迹成为回路

(3)、图中的路

顶点不重复的途径称为图的一条路。(即顶点和边都不能重复,但起始顶点和结尾顶点可以重复,此时为圈)

注: 起点与终点重合的途径、迹、路分别称为图的闭途径、闭迹与圈。闭迹也称为回路。长度为 k k k的圈称为 k k k圈, k k k为奇数时称为奇圈, k k k为偶数时称为偶圈。

(4)、图中两顶点的距离

图中顶点 u u u v v v的距离: u u u v v v间最短路的长度称为 u u u v v v间距离。记为 d ( u , v ) d(u, v) d(u,v)。 如果 u u u v v v间不存在路,定义 d ( u , v ) = ∞ d(u, v)=∞ d(u,v)=.

(5)、图中两顶点的连通性

G G G中点 u u u v v v说是连通的,如果 u u u v v v间存在通路。否则称 u u u v v v不连通。点的连通关系是等价关系。

如果图 G G G中任意两点是连通的,称 G G G是连通图,否则,称 G G G是非连通图。非连通图中每一个极大连通部分,称为 G G G的连通分支。 G G G的连通分支的个数,称为 G G G的分支数,记为 ω ( G ) \color{red}ω(G) ω(G)

如下: G 1 G_1 G1 是连通图, G 2 G_2 G2 是非连通图, G 2 G_2 G2 中的 v 5 , v 6 v_5, v_6 v5,v6 就是一个连通分支,其余部分是一个连通分支

(6)、图的直径

连通图G的直径定义为:
d ( G ) = m a x { d ( u , v ) ∣ u , v ∈ V ( G ) } d\left(G\right)=max\left\{d\left(u,v\right)|u,v\in V\left(G\right)\right\} d(G)=max{d(u,v)u,vV(G)}

如果G不连通,图G的直径定义为: d ( G ) = ∞ d (G ) = \infty d(G)=

2、连通性性质

定理1: 若图 G G G不连通,则其补图连通 ( G G G 不连通,一定有多个分支)

证明: (分别用两点 u , v u, v u,v G G G 的同一分支与不同分支两种情况,在 G ‾ \overline{G} G 中均连通来说明补图连通)
(1)对 ∀ u , v ∈ V ( G ‾ ) \forall\left.u,v\right.\in V\left(\overline{G}\right) u,vV(G) , 如果 u , v u,v u,v属于 G G G的同一分支(如图中的 v 1 , v 2 v_1, v_2 v1,v2),设 w w w(如图中的 v 3 v_3 v3)是与 u, v 处于不同分支中的点,则在 G G G 的补图中,u与w, v与w分别邻接,于是,u与v在G的补图中是连通的,通过 w,为 uwv。

如果u与v在G的两个不同分支中,则在G的补图中必然邻接,因此,也连通。

所以,若G不连通,G的补图是连通的。

3、偶图的判定定理

定理2 一个图是偶图当且仅当它不包含奇圈。(偶图指一个图,它的点集可以分解为两个(非空)子集 X X X Y Y Y,使得每条边的一个端点在 X X X中,另一个端点在 Y Y Y中,奇圈是指路径长度为奇数的圈)

证明: 必要性,即证明一个图是偶图,那一定不含有奇圈,设 G G G是具有二分类 ( X , Y ) X,Y) X,Y) 的偶图,并且 C = v 0 v 1 . . . v k v 0 C=v_0v_1...v_kv_0 C=v0v1...vkv0 G G G的一个圈,不失一般性,可假定 v 0 ∈ X v_0 \in X v0X。一般说来, v 2 i ∈ X v_{2i} \in X v2iX, v 2 i + 1 ∈ Y v_{2i +1} \in Y v2i+1Y。又因为 v 0 ∈ X v_0 \in X v0X,所以 v k ∈ Y v_k \in Y vkY(说明 k k k 是奇数),由此即得 C C C是偶圈。

充分性: 已知一个图不含有奇圈,在 G G G中任意选取点 u u u, 定义 V V V的分类如下:(即将 G G G 中的点分为两个集合)

X = { x ∣ d ( u , x ) 是偶数,  x ∈ V ( G ) } Y = { y ∣ d ( u , y ) 是奇数,  y ∈ V ( G ) } \begin{gathered} X=\{x\mid d\left(u,x\right)\text{是偶数, }x\in V(G)\} \\ Y=\{y\mid d\left(u,y\right)\text{是奇数, }y\in V(G)\} \end{gathered} X={xd(u,x)是偶数xV(G)}Y={yd(u,y)是奇数yV(G)}

下面证明: X X X中任意两点 v v v w w w , v v v w w w不邻接!

v v v w w w X X X中任意两个顶点。 P P P是一条最短 ( u , v ) (u , v) (u,v)路 ,而 Q Q Q是一条最短的 ( u , w ) (u, w) (u,w)路。

又设 u 1 u_1 u1 P P P Q Q Q的最后一个交点(因为这段路径可能有多个重复习点)。由于 P , Q P, Q P,Q是最短路,所以 P , Q P,Q P,Q u u u u 1 u_1 u1段长度相同,因此奇偶性相同。又 P , Q P,Q P,Q的长均是偶数 (因为均来自我们定义的 X X X,所以 P , Q P,Q P,Q u 1 v u_1v u1v段和 u 1 w u_1w u1w段奇偶性相同。因此 ( v , w ) (v, w) (v,w) 路为偶数,因为奇偶性相同的两段路相加为偶数,因此, 如果 v v v w w w邻接(将 v,w 相连),则可得到奇圈,矛盾!(说明 v   w v ~w v w 一定不能邻接也就说明了图为偶图 )


答: 根据 定理2 一个图是偶图当且当它不包含奇圈。可知,
1.不是(含有奇圈) 2.是 3.是(没有圈) 4.不是


三、最短路算法、图的代数表示

(一)、最短路算法

1、相关概念

(1) 赋权图

在图 G G G的每条边上标上一个实数 w ( e ) w(e) w(e)后, 称 G G G为边赋权图。被标上的实数称为边的权值。

H H H是赋权图 G G G的一个子图,称 W ( H ) = ∑ e ∈ E ( H ) w ( e ) W\textbf{(}H\textbf{)}=\sum_{e\in E\textbf{(}H\textbf{)}}w\textbf{(}e\textbf{)} W(H)=eE(H)w(e) 为子图 H H H的权值。

权值的意义是广泛的。可以表示距离,可以表示交通运费,可以表示网络流量,在朋友关系图甚至可以表示友谊深度。但都可以抽象为距离。

(2) 赋权图中的最短路

G G G为边赋权图。 u u u v v v G G G中两点,在连接 u u u v v v的所有路中,路中各边权值之和最小的路,称为 u u u v v v间的最短路。

(3) 算法

解决某类问题的一组有穷规则,称为算法。

1) 好算法
算法总运算量是问题规模的多项式函数时,称该算法为好算法。(问题规模:描述或表示问题需要的信息量)

算法中的运算包括算术运算、比较运算等。运算量用运算次数表示。

2) 算法分析
对算法进行分析,主要对时间复杂性进行分析。分析运算量和问题规模之间的关系。

2、最短路算法

1959年,旦捷希(Dantjig)发现了在赋权图中求由点 a a a到点 b b b的最短路好算法,称为顶点标号法。
t ( a n ) \mathbf{t}\left(\mathbf{a_n}\right) t(an): 点 a n \mathbf{a_n} an 的标号值,表示点 a 1 = a \mathbf{a_1=a} a1=a a n \mathbf{a_n} an的最短路长度

A i = { a 1 , a 2 , . . . , a i } \mathbf{A_i=\{a_1,a_2,...,a_i\}} Ai={a1,a2,...,ai}:已经标号的顶点集合。

T i T_i Ti : a 1 a_1 a1 a i a_i ai的最短路上的边集合

算法叙述如下:

实际思想为: 选标记初始点,后续不断寻找已标记点到周围点的最短路,选择一个最短的标记,每次循环仅标记一个点,最终找到最短路
在这里插入图片描述

时间复杂性分析:
对第 i i i次循环:步骤(2)要进行i次比较运算,步骤(3)要进行i次加法与i次比较运算。所以,该次循环运算量为 3 i 3i 3i .所以,在最坏的情况下,运算量为 n 2 n^2 n2级,是好算法。

算法证明:(不掌握)
定理1:算法中的函数 t ( a i ) t(a_i) t(ai)给出了 a a a a i a_i ai的距离。


将 8,5,3 能装换的所有状态列举出来,赋边权1



(二)、图的代数表示

用邻接矩阵或关联矩阵表示图,称为图的代数表示。用矩阵表示图,主要有两个优点: (1) 能够把图输入到计算机中;(2) 可以用代数方法研究图论。

1、图的邻接矩阵

定义 1 G G G n n n阶图, V = v 1 , v 2 , … , v n V={v_1, v_2, …, v_n} V=v1,v2,,vn,邻接矩阵 A ( G ) = ( a i j ) A(G)=(a_{ij}) A(G)=(aij), 其中:

a i j = { l ,      v i 与  v j 间 边 数 0,      v i 和  v j 不 邻 接 a_{ij}=\begin{cases}l,~~~~v_i\text{与 }v_j\text{间 边 数}\\\textbf{0,}~~~~v_i\text{和 }v_j\text{不 邻 接}&\end{cases} aij={l,    vi vj  0,    vi vj  

  • 行和或者列和都表示该顶点的度

2. 图G的邻接矩阵的性质

(1) 非负性与对称性
由邻接矩阵定义知 a i j a_{ij} aij是非负整数,即邻接矩阵是非负整数矩阵;

在图中点 v i v_i vi v j v_j vj邻接,有 v j v_j vj v i v_i vi邻接,即 a i j = a j i a_{ij} =a_{ji} aij=aji. 所以,邻接矩阵是对称矩阵。

(2) 同一图的不同形式的邻接矩阵是相似矩阵。
这是因为,同图的两种不同形式矩阵可以通过交换行和相应的列变成一致。

(3) 如果 G G G为简单图,则 A ( G ) A(G) A(G)为布尔矩阵; 行和(列和)等于对应顶点的度数;矩阵元素总和为图的总度数,也就是 G G G的边数的2倍。

(4) G 连通的充分必要条件是: A ( G ) A(G) A(G)不能与如下矩阵相似
( A 11 0 0 A 22 ) \color{red}\left.\left(\begin{array}{cc}A_{11}&0\\0&A_{22}\end{array}\right.\right) (A1100A22)

证明:

  1. 必要性 若不然:设 A 11 A_{11} A11对应的顶点是 v 1 , v 2 , … , v k , A 22 v_1, v_2,…, v_k , A_{22} v1,v2,,vk,A22对应的顶点为 v k + 1 , v k + 2 , … , v n v_{k+1}, v_{k+2},…, v_n vk+1,vk+2,,vn

    显然, v i ( 1 ≤ i ≤ k ) v_i (1≤i≤k) vi(1ik) v j ( k + 1 ≤ i ≤ n ) v_j (k+1≤i≤n) vj(k+1in) 不邻接,即 G G G 是非连通图。矛盾!
  1. 充分性
    若不然:设 G 1 G_1 G1 G 2 G_2 G2 G G G的两个不连通的部分,并且设 V ( G 1 ) = { v 1 , v 2 , . . . , v k } , V ( G 2 ) = { v k + 1 , v k + 2 , . . . , v n } \mathrm{V(G_1)=\{v_1,v_2,...,v_k\},V(G_2)=\{v_{k+1},v_{k+2},...,v_n\}} V(G1)={v1,v2,...,vk},V(G2)={vk+1,vk+2,...,vn},
    如果在写 G G G的邻接矩阵时,先排 V ( G 1 ) V(G_1) V(G1)中点,再排 V ( G 2 ) V(G_2) V(G2)中点,则 G G G的邻接矩阵形式必为:
    ( A 11 0 0 A 22 ) \begin{pmatrix}A_{11}&\mathbf{0}\\\mathbf{0}&A_{22}\end{pmatrix} (A1100A22)

(5) 定理:设 A k ( G ) = ( a i j ( k ) ) A^k(G)=({a_{ij}}^{(k)}) Ak(G)=(aij(k)),则 a i j ( k ) {a_{ij}}^{(k)} aij(k)表示顶点 v i v_i vi到顶点 v j v_j vj的途径长度为 k k k的途径条数。 A k ( G ) A^k(G) Ak(G) 表示 A ( G ) A(G) A(G) k k k 次方,其中 A ( G ) A(G) A(G) 为邻接矩阵)☆☆☆☆☆☆

证明:
k k k作数学归纳法证明。 当 k = 1 k=1 k=1时,由邻接矩阵的定义,结论成立;
设结论对 k − 1 k-1 k1时成立。当为 k k k时:

一方面:先计算 A k A^k Ak
A k = A k − 1 ∙ A = ( a i 1 ( k − 1 ) a j 1 + a i 2 ( k − 1 ) a j 2 + ⋯ + a i n ( k − 1 ) a j n ) n × n \begin{aligned}A^k&=A^{k-1}\bullet A=\left(a_{i1}^{(k-1)}a_{j1}+a_{i2}^{(k-1)}a_{j2}+\cdots+a_{in}^{(k-1)}a_{jn}\right)_{n\times n}\end{aligned} Ak=Ak1A=(ai1(k1)aj1+ai2(k1)aj2++ain(k1)ajn)n×n

另一方面:考虑 v i v_i vi v j v_j vj的长度为 k k k的途径

v m v_m vm v i v_i vi v j v_j vj的途径中点,且该点和 v j v_j vj邻接。则 v i v_i vi v j v_j vj的经过 v m v_m vm且长度为 k k k的途径数目应该为:
a i m ( k − 1 ) a m j {a_{im}}^{(k-1)}a_{mj} aim(k1)amj

所以, v i v_i vi v j v_j vj的长度为 k k k的途径数目为:
a i 1 ( k − 1 ) a j 1 + a i 2 ( k − 1 ) a j 2 + ⋯ + a i n ( k − 1 ) a j n \large{a_{i1}}^{(k-1)}{a_{j1}}+{a_{i2}}^{(k-1)}{a_{j2}}+\cdots+{a_{in}}^{(k-1)}{a_{jn}} ai1(k1)aj1+ai2(k1)aj2++ain(k1)ajn

即为 a i j ( k ) a_{ij}(k) aij(k)


所以, v 1 v_1 v1 v 3 v_3 v3的途径长度为2和3的条数分别为:3和4。


推论: (1) A 2 A^2 A2的元素 a i i ( 2 ) a_{ii}^{(2)} aii(2)(主对角线上的元素) 是 v i v_i vi的度数, A 3 A^3 A3的元素 a i i ( 3 ) a_{ii}^{(3)} aii(3) (主对角线上的元素) 是含 v i v_i vi的三角形个数的 2 倍;( A 3 A^3 A3 根据定理知表示 v i v_i vi到顶点 v j v_j vj的途径长度为 3 3 3 的途径条数, a i i ( 3 ) a_{ii}^{(3)} aii(3) 则表示 v i v_i vi到自身 v i v_i vi的途径长度为 3 3 3 的途径条数,途径条数为 3 且经过自身,一定是三角形 )(因为途径是可以重复顶点和边的,因此 a i i ( 2 ) a_{ii}^{(2)} aii(2) 即表示从自身出发到其他邻接的顶点然后又回来)

(2) 若 G G G是连通的,对于 i ≠ j i ≠j i=j , v i v_i vi v j v_j vj间距离是使 A n A^n An a i j ( n ) ≠ 0 a_{ij}^{(n)} ≠ 0 aij(n)=0的最小整数。

3、图的关联矩阵

(1) 若 G G G ( n , m ) (n, m) (n,m) 图。定义 G G G的关联矩阵: M ( G ) = ( a i j ) n × m M(G)=(a_{ij})_{n\times m} M(G)=(aij)n×m

其中: a i j = l , v i 与 e j 关联的次数(0 , 1 ,  或 2(环)) \begin{aligned}a_{ij}&=l,v_i\text{与}e_j\text{关联的次数(0},1,\text{ 或 2(环))}\end{aligned} aij=l,viej关联的次数(0,1,  2())

这里注意:矩阵的行对应顶点,列对应边

(2) 关联矩阵的性质

  1. 关联矩阵的元素为0,1或2;
  2. 关联矩阵的每列和为2;每行的和为对应顶点度数;(与所有关联的边的总和)

作业 P29—P30 16

四、邻接谱与图的邻接代数

(一)、邻接谱

1、图的特征多项式

定义1: 图的邻接矩阵 A ( G ) A(G) A(G)的特征多项式:

f ( G , λ ) = ∣ λ E − A ∣ = λ n + α 1 λ n − 1 + α 2 λ n − 2 + ⋯ + α n − 1 λ + α n f(G,\lambda)=\left|\lambda E-A\right|=\lambda^n+\alpha_1\lambda^{n-1}+\alpha_2\lambda^{n-2}+\cdots+\alpha_{n-1}\lambda+\alpha_n f(G,λ)=λEA=λn+α1λn1+α2λn2++αn1λ+αn

称为图 G G G的特征多项式。

2、图的邻接谱

定义2: 图的邻接矩阵 A ( G ) A(G) A(G)的特征多项式的特征值及其重数,称为 G G G的邻接谱。

例如,我们能够容易求出完全图 K n K_n Kn的邻接谱为: S p e c ( K n ) = ( − 1 n − 1 n − 1 1 ) \left.Spec(K_n)=\left(\begin{matrix}-1&n-1\\n-1&1\end{matrix}\right.\right) Spec(Kn)=(1n1n11)

第一行表示特征值,第二行表示对应特征值的重数 K n K_n Kn 的邻接谱具体计算过程如下:


先把第二列到最后一列的元素加到第一列,然后提取出 λ − n + 1 λ-n+1 λn+1,再通过分别将第一列所有1加到其他各列,这样,除了第一列的元素全为 1,剩下主对角线只剩下 n − 1 n-1 n1 λ + 1 λ+1 λ+1,利用第一行进行代数余子式来求解最终的行列式,通过代数余子式转换后,实际上最终对角线元素相乘即可

E E E 是主对角线为 1 的单位矩阵


定义2 若两个非同构的 n n n阶图具有相同的谱,则称它们是同谱图。


定理1 设单图 A ( G ) A(G) A(G)的谱为: S p e c ( G ) = ( λ 1 λ 2 ⋯ λ s m 1 m 2 ⋯ m s ) \mathrm{Spec}(G)=\begin{pmatrix}\lambda_1&\lambda_2&\cdots&\lambda_s\\m_1&m_2&\cdots&m_s\end{pmatrix} Spec(G)=(λ1m1λ2m2λsms),则:
∑ i = 1 s m i λ i 2 = 2 m ( G ) \sum_{i=1}^sm_i\lambda_i^2=2m(G) i=1smiλi2=2m(G)

所有的特征值的平方和,实际上就等于原矩阵平方的对角元素之和

注: 定理1 给出了单图 A ( G ) A(G) A(G)的谱与图的边数之间的关系。提示我们,通过研究邻接矩阵可以获取图的结构信息!也就是可以借助于矩阵理论方法研究图结构!实现图论的代数研究。

说明: ∑ i = 1 S m i λ i 2 = ∑ i = 1 n a i i ( 2 ) \sum_{i=1}^{S}m_i{\lambda_i}^2=\sum_{i=1}^{n}{a_{ii}}^{(2)} i=1Smiλi2=i=1naii(2)

线性代数中有一个结论: 如果 λ \lambda λ 是方阵 A A A 的一个特征值,那么 λ 2 \lambda^2 λ2 就是方阵 A 2 A^2 A2 的一个特征值, ∑ i = 1 s m i λ i 2 \sum_{i=1}^sm_i\lambda_i^2 i=1smiλi2 就表示方阵 A 2 A^2 A2 的所有特征值之和,也就等于方阵 A 2 A^2 A2 的主对角线元素的积,即 ∑ i = 1 n a i i ( 2 ) \sum_{i=1}^{n}{a_{ii}}^{(2)} i=1naii(2)



(二)、图的邻接代数

1、图的邻接代数的定义

定义3:设 A A A是无环图 G G G的邻接矩阵,称:

Λ ( G ) = { a 0 E + a 1 A + ⋯ + a k A k ∣ a i ∈ C , k ∈ Z + } \Lambda\left(G\right)=\left\{a_{0}E+a_{1}A+\cdots+a_{k}A^{k}\left|a_{i}\right.\in C,k\in Z^{+}\right\} Λ(G)={a0E+a1A++akAkaiC,kZ+}

对于矩阵的加法和数与矩阵的乘法来说作成数域 C C C上的向量空间,称该空间为图 G G G的邻接代数。

注: 向量空间的定义可简单地记为“非空”、“两闭”、“八条”

2、图的邻接代数的维数特征(不懂)

定理1: G G G n n n阶连通无环图,则:

d ( G ) + 1 ≤ dim ⁡ Λ ( G ) ≤ n d\left(G\right)+1\leq\operatorname{dim}\Lambda\left(G\right)\leq n d(G)+1dimΛ(G)n

证明: 由哈密尔顿—凯莱定理(见北大数学力学系《高等代数》):
f ( A ) = a 0 E + a 1 A + a 2 A 2 + ⋯ + a n A n = 0 \begin{aligned}f\left(A\right)&=a_0E+a_1A+a_2A^2+\cdots+a_nA^n=0\end{aligned} f(A)=a0E+a1A+a2A2++anAn=0

所以: d i m   Λ ( G ) ≤ n \mathrm{dim~}\Lambda(G)\leq n dim Λ(G)n

下面证明: E , A , A 2 , . . . , A d ⁡ ( G ) \mathbf{E},\mathbf{A},\mathbf{A}^2,...,\mathbf{A}^{\operatorname{d}(G)} E,A,A2,...,Ad(G) 线性无关!

若不然,则存在不全为零的数 a 0 , a 1 , . . . , a d ( G ) , \mathbf{a}_0,\mathbf{a}_1,...,\mathbf{a}_{\mathbf{d}_{(G)}}, a0,a1,...,ad(G),使:
a 0 E + a 1 A + a 2 A 2 + ⋯ + a d ( G ) A d ( G ) = 0 \large a_0E+a_1A+a_2A^2+\cdots+a_{d(G)}A^{d(G)}=0 a0E+a1A+a2A2++ad(G)Ad(G)=0
设 a m − 1 ≠ 0 _{\mathrm{m-1}}\neq0 m1=0 ,但当 k ≥ m \mathrm{k\geq m} km 时,有 a k = 0. a_{\mathrm{k}}=0. ak=0. 于是有:
a 0 E + a 1 A + a 2 A 2 + ⋯ + a m − 1 A m − 1 = 0 , ( a m − 1 ≠ 0 ) a_0E+a_1A+a_2A^2+\cdots+a_{m-1}A^{m-1}=0,(a_{m-1}\neq0) a0E+a1A+a2A2++am1Am1=0,(am1=0)
假定: v 1 v 2 . . . v d ( G ) + 1 \mathbf{v_1v_2...v_{d(G)+1}} v1v2...vd(G)+1 G G G中一条最短的 ( v 1 , v d ( G ) + 1 ) (\mathbf{v_1,v_{d(G)+1}}) (v1,vd(G)+1)路, 易知:d ( G ) < n . (G)<\mathbb{n}. (G)<n.

于是, d ( v 1 , v m ) = m − 1 , ( m = 1 , 2 , . . . , d ( G ) + 1 ) \mathrm{d(v_1, v_m) = m- 1, ( m= 1, 2, ..., d( G) + 1) } d(v1,vm)=m1,(m=1,2,...,d(G)+1)

注意到: A k A^k Ak 的元素 a 1 m ( k ) \mathfrak{a}_{1m}^{(k)} a1m(k) k < m − 1 k <m-1 k<m1 时为零, 而 a 1 m ( m − 1 ) > 0. \mathbf{a_{1m}}^{(\mathrm{m-1})}>0. a1m(m1)>0.

所以, a 0 E + a 1 A + a 2 A 2 + ⋯ + a m − 1 A m − 1 a_0E+a_1A+a_2A^2+\cdots+a_{m-1}A^{m-1} a0E+a1A+a2A2++am1Am1 的一行 m m m 列元为 a m − 1 a 1 m ( m − 1 ) ≠ 0 \mathrm{a_{m-1}a_{1m}}^{(\mathrm{m-1})}\neq0 am1a1m(m1)=0 , 这样有:

a 0 E + a 1 A + a 2 A 2 + ⋯ + a m − 1 A m − 1 ≠ 0 a_0E+a_1A+a_2A^2+\cdots+a_{m-1}A^{m-1}\neq0 a0E+a1A+a2A2++am1Am1=0

产生矛盾!

定理结果分析:不等式右端的界是紧的!

因为:对于n点路来说,其直径d (G) = n-1, 所以,此时该路的邻接代数的维数正好为n。

这就是说,如果G为n点路,那么: d i m   Λ ( G ) = n \mathrm{dim~}\Lambda(G)=n dim Λ(G)=n
并且: d i m   Λ ( G ) = d ( G ) + 1 \mathrm{dim~}\Lambda(G)=d\left(G\right)+1 dim Λ(G)=d(G)+1

(三)、图空间简介

定理2: 集合:
M = { G 1 , G 2 , ⋯   , G N ∣ G i 为单图 G 的生成子图,  N = 2 m } M=\left\{G_1,G_2,\cdots,G_N\left|G_i\text{为单图}G\text{的生成子图, } N=2^m\right\}\right. M={G1,G2,,GNGi为单图G的生成子图N=2m}

对于图的对称差运算和数乘运算:
0 ∙ G i = Φ , 1 ∙ G i = G i \begin{aligned}0{\bullet}G_i=\Phi,1{\bullet}G_i=G_i\end{aligned} 0Gi=Φ,1Gi=Gi
来说作成数域 F = { 0 , 1 } F = \{ 0, 1 \} F={0,1} 上的 m m m维向量空间。

证明: (1) 证明M是F上的向量空间,只需要验证“两闭”与“八条”即可。
(2) M的维数为m

E ( G ) = { e 1 , e 2 , ⋯   , e m } E(G)=\left\{e_1,e_2,\cdots,e_m\right\} E(G)={e1,e2,,em}

又令: g i = G [ e i ] , ( 1 ≤ i ≤ m ) \begin{aligned}g_i&=G[e_i],(1\leq i\leq m)\end{aligned} gi=G[ei],(1im)

可以证明: g 1 , g 2 , … , g m g_1,g_2,…,g_m g1,g2,,gm M M M的一组基!

事实上:对 ∀ G i ∈ M \forall G_i\in M GiM

E ( G i ) = { e i 1 , e i 2 , . . . , e i k } \mathrm{E\left(G_i\right)=\{e_{i1},e_{i2},...,e_{ik}\}} E(Gi)={ei1,ei2,...,eik},则: G i = g i 1 Δ g i 2 Δ ⋯ Δ g i k G_i=g_{i1}\Delta g_{i2}\Delta\cdots\Delta g_{ik} Gi=gi1Δgi2ΔΔgik

另一方面:若 c 1 g 1 Δ c 2 g 2 Δ ⋯ Δ c m g m = Φ c_1g_1\Delta c_2g_2\Delta\cdots\Delta c_mg_m=\Phi c1g1Δc2g2ΔΔcmgm=Φ

则: c 1 = c 2 = . . . = c m = 0 c_1 = c_2 = ... = c_m = 0 c1=c2=...=cm=0

所以: dim ⁡ ( M ) = m \operatorname{dim}(M)=m dim(M)=m

五、极图理论简介

(一)、 l l l 部图的概念与特征

定义1 若简单图 G G G的点集 V V V有一个划分:
V = ⋃ i = 1 l V i , V i ∩ V j = Φ , i ≠ j \begin{aligned}V&=\bigcup_{i=1}^lV_i,V_i\cap V_j=\Phi,i\neq j\end{aligned} V=i=1lVi,ViVj=Φ,i=j

且所有的 V i V_i Vi非空, V i V_i Vi内的点均不邻接,称 G G G是一个 l l l 部图。(当 l l l = 2 时,为偶图,即 l l l 部图是偶图的扩展)

定义2 如果在一个 l l l 部图 G G G中,任意部 V i V_i Vi中的每个顶点同 G G G中其它各部中的每个顶点均邻接,称 G G G为完全 l l l 部图。记作: ( l l l = 2 时,为完全偶图)
G 1 = K n 1 , n 2 , ⋯   , n l , ( n i = ∣ V i ∣ , 1 ≤ i ≤ l ) G_1=K_{n_1,n_2,\cdots,n_l},(n_i=\left|V_i\right|,1\leq i\leq l) G1=Kn1,n2,,nl,(ni=Vi,1il)

显然:
∣ V ∣ = ∑ i l n i , m ( G ) = ∑ 1 ≤ i < j ≤ l n i n j \begin{aligned}\left|V\right|&=\sum_i^ln_i, &m\left(G\right)=\sum_{1\leq i<j\leq l}n_in_j\end{aligned} V=ilni,m(G)=1i<jlninj

定义3 如果在一个 n n n 个点的完全 l l l 部图 G G G 中有:
n = k l + r , 0 ≤ r < l ∣ V 1 ∣ = ∣ V 2 ∣ = ⋯ = ∣ V r ∣ = k + 1 ∣ V r + 1 ∣ = ∣ V r + 2 ∣ = ⋯ = ∣ V l ∣ = k \begin{aligned}&n=kl+r,0\leq r<l\\&|V_1|=|V_2|=\cdots=|V_r|=k+1\\&|V_{r+1}|=|V_{r+2}|=\cdots=|V_l|=k\end{aligned} n=kl+r,0r<lV1=V2==Vr=k+1Vr+1=Vr+2==Vl=k

则称 G G G n n n 阶完全 l l l 几乎等部图,记为 T l , n T_{l, n} Tl,n

∣ V 1 ∣ = ∣ V 2 ∣ = . . . = ∣ V l ∣ |V_1|=|V_2|=...=|V_l| V1=V2=...=Vl 的完全 l l l 几乎等部图称为完全 l l l 等部图。

定理1: 连通偶图的 2 2 2 部划分是唯一的。

定理2: n n n阶完全偶图 K n 1 , n 2 K_{n1,n2} Kn1,n2 的边数 m = n 1 n 2 m=n_1n_2 m=n1n2, 且有:
m ≤ ⌊ n 2 4 ⌋ m\leq\left\lfloor\frac{n^2}4\right\rfloor m4n2

( n − n 2 ) n 2 (n - n_2)n_2 (nn2)n2 进行配平方得到 n 2 4 − ( n 2 − n 2 ) 2 \frac{n^2}4-(\frac n2-n_2)^2 4n2(2nn2)2 实际上就是将 n n n 阶完全偶图划分为 K n / 2 , n / 2 K_{n/2,n/2} Kn/2,n/2,此时的边数最大

定理3 n n n l l l 部图 G G G 有最多边数的充要条件是 G ≅ T l , n G\cong T_{l,n} GTl,n

m ( G ) ≤ m ( K n 1 , n 2 , ⋯   , n l ) m(G)\leq m(K_{n_1,n_2,\cdots,n_l}) m(G)m(Kn1,n2,,nl) 表示图 G G G 的边数一定小于等于其完全 l l l 等部图的边数

  • n i , n j n_i, n_j ni,nj 表示 l l l 部图中,不同部的顶点数
  • 其中, f ( n 1 , n 2 , ⋯   , n l ) = ∑ i < j n i n j f\left(n_1,n_2,\cdots,n_l\right)=\sum_{i<j}n_in_j f(n1,n2,,nl)=i<jninj 表示 n i , n j n_i, n_j ni,nj 这两个不同部组成的总边数。 ∑ i = 1 l n i = n \sum_{i=1}^ln_i=n i=1lni=n 显然。要使得边数达到最大,则需要满足 ∣ n i − n j ∣ ≤ 1 \left|n_i-n_j\right|\leq1 ninj1,即构成一个完全 l l l 几乎等部图。

(二)、托兰定理

定义4 G G G H H H是两个 n n n阶图,称 G G G度弱于 H H H,如果存在双射 μ : V ( G ) → V ( H ) μ:V(G)→V(H) μV(G)V(H),使得:(这里的 K l + 1 K_{l + 1} Kl+1 是一个完全图)

∀ v ∈ V ( G ) , 有:  d G ( v ) ≤ d H ( μ ( v ) ) \forall v \in V(G),\text{有: }d_G(v)\leq d_H\left(\mu(v)\right) vV(G),dG(v)dH(μ(v))

注意:
(1)若 G G G度弱于 H H H,一定有: m ( G ) ≤ m ( H ) m(G)\leq m(H) m(G)m(H) 但逆不成立!例如:度序列 (1,1,4,2) 与 (3,3,3,3) 没有度弱关系,但是根据握手定理,任然满足 m ( G ) ≤ m ( H ) m(G)\leq m(H) m(G)m(H)
(2)两个图不一定存在度弱关系,如度序列 (1, 2, 2, 7) 与 (3, 1, 4, 6) 就不存在度弱关系

定理4 n n n阶简单图 G G G不包含 K l + 1 K_{l+1} Kl+1,则 G G G度弱于某个完全 l l l 部图 H H H,且若 G G G具有与 H H H 相同的度序列,则:(不作证明)

G ≅ H \begin{array}{cc}G&\cong&H\end{array} GH

定理5(Turán) G G G 是简单图,并且不包含 K l + 1 K_{l+1} Kl+1(即 G G G 的子图中,不包含 K l + 1 K_{l+1} Kl+1 这个完全图),则:

m ( G ) ≤ m ( T l , n ) m\left(G\right)\leq m\left(T_{l,n}\right) m(G)m(Tl,n)

仅当 G ≅ T l , n G\cong T_{l,n} GTl,n 时,有 m ( G ) = m ( T l , n ) m\left(G\right) = m\left(T_{l,n}\right) m(G)=m(Tl,n)

即 若 G G G 不包含 K l + 1 K_{l+1} Kl+1,即 m ( T l , n ) m\left(T_{l,n}\right) m(Tl,n) G G G 的边数最多的图

托兰定理指出:不含 K l + 1 K_{l+1} Kl+1 的极值图是完全 I I I 几乎等部图。托兰定理开启了极值图论研究的先河!特别是他的朋友,伟大数学家厄多斯是这个领域的杰出人物。

(三)、托兰定理的应用

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值