13、【李宏毅机器学习(2017)】Unsupervised Learning: Linear Dimension Reduction(无监督学习:线性降维)

这篇博客介绍了无监督学习,包括聚类和降维方法。在聚类部分,讨论了K均值和层次聚类算法。在降维方面,详细讲述了PCA(主成分分析),解释了PCA的原理、求解过程及其在减少模型参数中的作用。此外,还简要提及了矩阵因子分解在揭示数据隐藏关系中的应用。
摘要由CSDN通过智能技术生成

在前面的博客中介绍了监督学习和半监督学习,本篇博客将开始介绍无监督学习。


目录


无监督学习介绍

监督学习、半监督学习、无监督学习

  • 监督学习中的样本 { (xr,ŷ r)}Rr=1 { ( x r , y ^ r ) } r = 1 R 中的 ŷ  y ^ 是已知的,所以监督学习算法可以在训练集数据中充分使用数据的信息​​
  • 半监督学习的样本 { (xr,ŷ r)}Rr=1,{ xu}R+Uu=R { ( x r , y ^ r ) } r = 1 R , { x u } u = R R + U 中只有R个样本的 ŷ  y ^ 是已知,U个样本的 ŷ  y ^ 未知,且通常U远大于R
    – Transductive learning :将未知标签的数据作为测试集数据(用了未知标签的数据的feature)
    – Inductive learning:未知标签的数据不作为测试集数据
  • 无监督学习的样本
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值