【LeetCode】108. Convert Sorted Array to Binary Search Tree 解法及注释,分治法,递归

108. Convert Sorted Array to Binary Search Tree

Total Accepted: 73365 Total Submissions: 197776 Difficulty: Medium

Given an array where elements are sorted in ascending order, convert it to a height balanced BST.

【分析】

      题意:给定一个升序序列,将其转化成一个平衡的二叉搜索树。有【LeetCode】98.99.101题的基础,这个题比较简单,这个题涉及到的新概念是“平衡二叉搜索树”:平衡二叉树(Balanced Binary Tree,BBT)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。构造与调整方法 平衡二叉树的常用算法有红黑树、AVL、Treap等。 最小二叉平衡树的节点的公式如下 F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列,可以参考Fibonacci数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量。

      二叉搜索树(BST)前面已经提到,其特征在于中序遍历序列为升序,本题给定的数据集正是升序,因此结合平衡二叉树的定义我们很容易构造成一个平衡二叉搜索树。步骤如下:

      1、根据BST和BBT的定义,我们可采用“分治”的思想来解决。如果序列不为空,第一个首末下标分别为start和end,那么给定升序序列中下标为mid=(end-start)/2的数据必为根节点数值;该数据左侧[start,mid-1]和右侧[mid+1,end]升序数据同样遵循BST和BBT的定义,这两个升序序列的中间数据,即下标(mid-1-start)/2和(end-mid-1)/2对应的数据分别为左右子树的根节点。

     2、图解,如升序序列[1,2,3,5,6,7],欲构成平衡二叉搜索树的话,中间节点5为根节点,5的左侧升序序列[1,2,3]中间点2为根节点,右侧升序序列[6,7],“中间”节点6为根节点,以此内推直到节点全部用完。如下图所示:满足BST和BBT的定义,中序遍历结果[1,2,3,5,6,7]

                           

【解法及注释】

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* sortedArrayToBST(vector<int>& nums) 
    {
        if(nums.size()==0)return NULL;//输入序列为空
        return establishNode(nums,0,nums.size()-1);//分治
    }
    
    TreeNode* establishNode(vector<int>& nums,int start,int end)
    {
        
        if(start<=end)
        {
          int mid=start+((end-start)>>1);//升序序列中间数据为该序列构成的平衡二叉树根结点
          TreeNode *root=new TreeNode(nums[mid]);//建立根结点
          root->left=establishNode(nums,start,mid-1);//建立左右子树
          root->right=establishNode(nums,mid+1,end);
          return root;//返回
        }
        return NULL;//当升序序列数据用完,返回NULL,即叶子节点左右子树为空
    }
};





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jin_Kwok

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值