108. Convert Sorted Array to Binary Search Tree
Total Accepted: 73365 Total Submissions: 197776 Difficulty: Medium
Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
【分析】
题意:给定一个升序序列,将其转化成一个平衡的二叉搜索树。有【LeetCode】98.99.101题的基础,这个题比较简单,这个题涉及到的新概念是“平衡二叉搜索树”:平衡二叉树(Balanced Binary Tree,BBT)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。构造与调整方法 平衡二叉树的常用算法有红黑树、AVL、Treap等。 最小二叉平衡树的节点的公式如下 F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列,可以参考Fibonacci数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量。
二叉搜索树(BST)前面已经提到,其特征在于中序遍历序列为升序,本题给定的数据集正是升序,因此结合平衡二叉树的定义我们很容易构造成一个平衡二叉搜索树。步骤如下:
1、根据BST和BBT的定义,我们可采用“分治”的思想来解决。如果序列不为空,第一个首末下标分别为start和end,那么给定升序序列中下标为mid=(end-start)/2的数据必为根节点数值;该数据左侧[start,mid-1]和右侧[mid+1,end]升序数据同样遵循BST和BBT的定义,这两个升序序列的中间数据,即下标(mid-1-start)/2和(end-mid-1)/2对应的数据分别为左右子树的根节点。
2、图解,如升序序列[1,2,3,5,6,7],欲构成平衡二叉搜索树的话,中间节点5为根节点,5的左侧升序序列[1,2,3]中间点2为根节点,右侧升序序列[6,7],“中间”节点6为根节点,以此内推直到节点全部用完。如下图所示:满足BST和BBT的定义,中序遍历结果[1,2,3,5,6,7]
【解法及注释】
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums)
{
if(nums.size()==0)return NULL;//输入序列为空
return establishNode(nums,0,nums.size()-1);//分治
}
TreeNode* establishNode(vector<int>& nums,int start,int end)
{
if(start<=end)
{
int mid=start+((end-start)>>1);//升序序列中间数据为该序列构成的平衡二叉树根结点
TreeNode *root=new TreeNode(nums[mid]);//建立根结点
root->left=establishNode(nums,start,mid-1);//建立左右子树
root->right=establishNode(nums,mid+1,end);
return root;//返回
}
return NULL;//当升序序列数据用完,返回NULL,即叶子节点左右子树为空
}
};