Jina AI x DataWhale|跨模态神经搜索实践的教程正式上线!

Datawhale 与 Jina AI 合作发布跨模态神经搜索教程,利用MLOps框架Jina和CLIP模型,教你构建前后端分离的神经搜索应用,体验前沿的多模态AI技术。教程涵盖环境搭建、容器化部署,适合对多模态AI感兴趣的Python基础者,完成者有机会赢取Jina AI周边。
摘要由CSDN通过智能技术生成

Datawhale x Jina AI 联合推出跨模态神经搜索教程!本教程基于 MLOps 框架 Jina 与 CLIP 模型搭建,通过前后端分离的模式,帮助你快速地搭建自己的神经搜索应用,接触前沿的多模态 AI 技术。

教程背景

在当下互联网信息爆发且形式愈加丰富的背景下,多模态、跨模态的人工智能崛起。单一模态往往难以提供对图文、视频等信息的完整描述,而多模态人工智能颠覆了传统单模态的互动方式,用户可以使用任何模态的组合进行输入输出,包括且不限于文本、图像、视频、音频等,为计算机提供更接近于人类感知的场景,打造了全新的用户体验。

本次跨模态神经搜索实践教程由 Datawhale 和 Jina AI 社区联合推出。

教程亮点

有别于传统的搜索引擎的关键词匹配,本教程带你实现的是一个跨模态的神经搜索,通过输入对画面的描述文本即可获得高度对应的视频片段。

如图,输入“几个戴着麻将面具的人”,就能得到如下的视频片段。

outside_default.png

教程内容

内容说明:教程以 Jina 框架[1]和 CLIP 模型为基础,生动介绍了如何从零搭建起一个跨模态的神经搜索应用。从环境搭建,到容器化部署,每一步教程贡献者们都提供了清晰的文档。

学习路线<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值