多模态 跨模态|人机交互新突破!

本文探讨了多模态和跨模态在AI中的应用,如电影理解、图像生成等,强调它们能提供更丰富的用户体验和全内容搜索。Jina作为一个优秀的开发框架,为构建多模态、跨模态应用提供了支持,包括数据处理、服务化、模型调优等步骤。同时,文章指出该领域的挑战,如数据匹配、设计模式和开发复杂性,并邀请读者参与社区交流。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ce4d23bdfbede59af8c4da1f6be67886.png

我们对世界的认知和体验是多模式的,我们看向窗外,听到雨滴,闻到青草的味道,触摸到木板的纹理... 某种意义上来说,AI 就是赋予机器类人的感知和智慧,想要让 AI 理解我们周围的世界,它需要同时解释和推理这些多模式信息。

多模态、跨模态就是这样一个充满活力的领域,可以处理和关联来自多种模态信息的模型,具有非凡的潜力和越来越重要的意义。

介绍

多模态应用:让 AI 能够观察同一现象的多种模式,捕获到互补的信息,让预测结果更加可靠。比如电影,通过图像、音频、字幕文本以实现多种模态的理解。

跨模态应用:将源模态映射到目标模态,比如输入一句话,生成与文字高度匹配的一张图。

aba6fc1189d637a7024657fa74a5dd92.png

为什么我们需要多模态、跨模态

多、跨模态应用能够打造全新的用户体验,用户

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值