J-Tech Talk|跨模态视频检索进阶,一起探索CLIP模型的新天地!

Jina AI 社区带来了一场关于CLIP模型的J-Tech Talk,深入讲解如何利用CLIP进行跨模态视频检索。活动包括CLIP模型的原理、实际demo展示及工程化应用经验分享,旨在帮助开发者快速将CLIP应用到项目中。Q&A环节解答关于CLIP和视频检索的疑问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

J-Tech Talk

由 Jina AI 社区为大家带来的技术分享

围绕 Python 的相关话题

工程师们将深入细节地讲解具体的问题

分享 Jina AI 在开发过程中所积累的经验

87e5a9f72d3ccf0a0c1523764ca32c81.png

CLIP 模型在零样本图像分类、跨模态检索中效果拔群,它的出现同时推动了 NLP 和 CV 的发展,为解决许多实际问题提供了新的思路和方法。你是否希望也想在产品上加入低延迟的跨模态搜索能力?你是否希望了解如何快速将最前沿的 CLIP 模型加入到自己的应用里?如果是,那么这场 J-Tech Talk 就是为你准备的!

Jina AI 开源社区一直致力于推动前沿技术的更新迭代、应用落地以及传播在本期活动我们邀请到了开源项目 CLIP-as-service 的核心贡献者付杰,和你一起揭开这个跨模态视频检索的秘密,在这场活动中,付杰工程师将会带来的不仅仅是理论知识的分享,还会让大家亲身体验 CLIP 模型的魅力。他将会通过一个实际的 demo 展示 CLIP 模型的强大功能,并讲解其

### 跨模态视频检索技术介绍 跨模态视频检索是一种涉及多学科交叉的技术,它允许用户通过不同类型的查询(如文本描述、图像或其他形式的数据)来查找最相关的视频片段。这项技术依赖于强大的算法和模型,特别是像CLIP这样的预训练模型,在处理复杂的多媒体数据方面表现出色[^2]。 #### CLIP模型的工作原理 CLIP (Contrastive Language–Image Pre-training) 是一种由OpenAI开发的深度学习架构,能够理解并关联来自两个不同域的信息——即自然语言和视觉内容。具体来说: - **联合嵌入空间**:该模型可以将图片与对应的文本映射到同一个高维向量空间中; - **对比损失函数**:利用成对样本之间的相似度作为监督信号来进行优化训练; 这种设计使得即使是在未见过的情况下也能很好地匹配新的图文组合,从而实现高效的跨媒体搜索功能。 #### 应用场景实例 为了更好地展示如何应用这些理论知识解决实际问题,在一次名为 "J-Tech Talk | 跨模态视频检索进阶" 的在线讲座活动中提到过这样一个案例研究: 假设有一个庞大的监控录像库,想要快速定位某个人物出现在哪些位置,则可以通过输入一张目标人物的照片以及一段简短的文字说明(比如时间范围),系统就能自动筛选出符合条件的结果列表供进一步审查。 ```python import clip import torch model, preprocess = clip.load("ViT-B/32") # 加载预训练好的CLIP模型 text_inputs = ["一个人穿着红色衣服走在街上"] # 用户提供的文字提示 image_input = preprocess(image).unsqueeze(0) with torch.no_grad(): text_features = model.encode_text(clip.tokenize(text_inputs)) image_features = model.encode_image(image_input) logits_per_image, logits_per_text = model(image_features, text_features) probs = logits_per_image.softmax(dim=-1).cpu().numpy() print(f"预测概率为 {probs}") ``` 此代码展示了使用Python调用CLIP API执行简单的跨模式匹配操作的方法。这里先加载了一个预先训练完成的基础版CLIP网络结构,并准备好了待比较的目标对象表示形式(无论是基于文本还是图形)。之后计算两者间的距离得分并通过softmax转换成易于解释的概率分布输出给最终使用者参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值