蓝桥杯Java B组备赛

一、递归与递推

1.Acwing 92.递归实现指数型枚举

也就是考虑选不选这个数(高中数学集合问题)

image-20220107130136325

 实现代码:

import java.util.Scanner;

public class Main {
    static int n, N = 16;    //数组从1开始 
    static int[] st = new int[N]; //状态 0:未考虑 1:选 2 :不选
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        n = sc.nextInt();
        dfs(1);
    }

    private static void dfs(int u) {
        if( u > n) {
            for(int i = 1; i <= n; i ++) {
                if(st[i] == 1) {
                    System.out.print(i + " ");
                }
            }
            System.out.println();
            return;
        }

        st[u] = 2;
        dfs(u + 1); // 第一个分支:不选
        // 这两行恢复现场加不加都一样的 
        // 因为递归时会被下面的值给覆盖掉 所以不用手动恢复 这里加上是让代码看起来更加圆滑 更加还原算法本身
        st[u] = 0; // 恢复现场

        st[u] = 1;
        dfs(u + 1); // 第二个分支:选
        st[u] = 0;
    }
}

2.Acwing 94.递归实现排列型枚举

image-20220107143113429

法1:考虑依次枚举哪个数放在哪个位置

法2:依次枚举每个位置,去看放哪个数(本题做法)

import java.util.Scanner;

public class Main {

    static int n, N = 10;
    static int[] state = new int[N]; // 0表示还没放数,1~n表示放了哪个数
    static boolean[] used = new boolean[N]; // true表示用过,false表示还未用过

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        n = sc.nextInt();
        dfs(1);
    }
    private static void dfs(int u) {
        if (u > n) { // 边界
            for (int i = 1; i <= n; i++) {
                System.out.print(state[i] + " "); // 打印方案
            }
            System.out.println();
            return;
        }
        // 依次枚举每个分支,即当前位置可以填哪些数
        for (int i = 1; i <= n; i++) {
            if (!used[i]) {
                state[u] = i;
                used[i] = true;
                dfs(u + 1);

                // 恢复现场
                state[u] = 0;
                used[i] = false;
            }
        }
    }
}

3.Acwing 93.递归实现组合型的枚举

思想:把指数型符合长度的结果挑出来

优化:剪枝儿~

image-20220108133621743

import java.util.Scanner;

public class Main {
    
    static int n, m, N = 26;
    static Scanner sc = new Scanner(System.in);
    static int[] way = new int[N];
    
    public static void main(String[] args) {
        n = sc.nextInt();
        m = sc.nextInt();
        dfs(1, 1);
    }
    private static void dfs(int u, int start) {
        if (u + n - start < m) return; // 剪枝 优化dfs 如果把后面所有数全选上,都不够m个,当前分支就一定无解
        if (u == m + 1) { // 边界
            for (int i = 1; i <= m; i++) {
                System.out.print(way[i] + " "); // 打印方案
            }
            System.out.println();
            return;
        }
        for (int i = start; i <= n; i++) {
            way[u] = i;
            dfs(u + 1, i + 1);
            way[u] = 0; // 恢复现场
        }
    }
}

 4.Acwing 1209.带分数

Java B组 第9题         先列出一个表达式: n = a + b / c , 得到c · n = c · a + b, n已知,只需要枚举a和c , b直接可以算出

image-20220108131645843

import java.util.Scanner;

public class Main {

    static final int N = 10;
    static int n; // 输入的目标数
    static int cnt; // 最后的结果数
    static int[] num = new int[N]; // 保存全排列的结果
    static boolean[] used = new boolean[N]; // 标记数字状态 true表示已使用,false表示未使用
    static Scanner sc = new Scanner(System.in);

    public static void main(String[] args) {
        n = sc.nextInt();
        dfs(0);
        System.out.print(cnt);
    }

    private static void dfs(int u) {
        
        if (u == 9) {
            // 两层循环将数组分成三段
            for (int i = 0; i < 7; i++) {
                for(int j = i + 1; j < 8; j++) {
                    int a = calc(0, i);
                    if (a >= n) return; // 优化:如果a比n还大 说明无解 直接return
                    int b = calc(i + 1, j);
                    int c = calc(j + 1, 8);
                    if (a * c + b == c * n) { // n = a + b / c 化为 c·n = c·a + b
                        cnt++;
                    }
                }
            }
            return;
        }
        // 全排列模板
        for (int i = 1; i <= 9; i++) {
            if (!used[i]) {
                used[i] = true;
                num[u] = i;
                dfs(u + 1);
                used[i] = false; // 恢复现场
            }
        }
    }
    // 在数组中计算某一区间的数
    private static int calc(int l, int r) {
        int res = 0;
        for (int i = l; i <= r; i++) {
            res = res * 10 + num[i];
        }
        return res;
    }
}

上面的方案其实我们还是需要进行对b进行枚举的,y总进行了优化,利用公式变换得到了b = c * n - c * a

import java.util.Scanner;
import java.util.Arrays;

public class Main {

    static final int N = 10;
    static int n; // 输入的目标数
    static int ans; // 最后的结果数
    static boolean[] st = new boolean[N]; // 标记数字状态 true表示已使用,false表示未使用
    static boolean[] backup = new boolean[N]; // 判重数组,备份
    static Scanner sc = new Scanner(System.in);

    public static void main(String[] args) {
        n = sc.nextInt();
        dfs_a(0, 0);
        System.out.print(ans);
    }

    private static void dfs_a(int u, int a) {
        if (a >= n) return;
        if (a != 0) dfs_c(u, a, 0);

        for (int i = 1; i <= 9; i++) {
            if (!st[i]) {
                st[i] = true;
                dfs_a(u + 1, a * 10 + i);
                st[i] = false; // 恢复现场
            }
        }
    }

    private static void dfs_c(int u, int a, int c) {
        if (u > 9) return;
        if (check(a, c)) ans++;

        for (int i = 1; i <= 9; i++) {
            if (!st[i]) {
                st[i] = true;
                dfs_c(u + 1, a, c * 10 + i);
                st[i] = false; // 恢复现场
            }
        }
    }

    private static boolean check(int a, int c) {
        long b = n * (long)c - a * c; // 这里要定义为long,要不然可能会溢出
        if (a == 0 || b == 0 || c == 0) return false; // 不包含0,直接返回

        backup = Arrays.copyOf(st, st.length); // 将st数组的值copy到backup里,保持st原样,更改backup里面的值
        
        while (b != 0) {
            int x = (int)(b % 10); // 取个位
            b /= 10; // 把个位删掉
            if (x == 0 || backup[x]) return false;
            backup[x] = true;
        }

        for (int i = 1; i <= 9; i++) {
            if (!backup[i]) return false;
        }
        return true;
    }
}

???但是运行时间比上一个还要长?what


第二次课

递归和递推的区别

 

Acwing 717斐波那契数列

递推写法 

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        int[] f = new int[46];
        f[1] = 0;
        f[2] = 1;
        for (int i = 3; i <= n; i++) f[i] = f[i - 1] + f[i - 2];
        
        for (int i = 1; i <= n; i++) System.out.print(f[i] + " ");
    }
}

优化写法(dp滚动数组的雏形)

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        int a = 0, b = 1;
        for (int i = 1; i <= n; i++) {
            System.out.print(a + " ");
            int fn = a + b;
            a = b;
            b = fn;
        }
    }
}

6.Acwing 95.费解的开关

题目梳理:

        需要将所有的灯变亮 (将所有的数字变成1)。

思想:

        每一行开关的操作完全被上一行灯的亮灭状态所唯一决定。顺序可以任意,每个格子最多按一次。所以解法就是枚举第一行,之后的所有操作就都确定了。最后一行的状态不能改了,需要特判一下,如果有灭着的说明方案不合法,如果全亮说明方案ok。

import java.util.Scanner;

public class Main {

    static final int N = 6;
    static char[][] g = new char[N][N];
    static char[][] backup = new char[N][N]; // 备份数组
    static int[] dx = {-1, 0, 1, 0, 0}; // 坐标x的偏移量
    static int[] dy = {0, 1, 0, -1, 0}; // 坐标y的偏移量

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        while (n-- != 0) {
            for (int i = 0; i < 5; i++) g[i] = sc.next().toCharArray();

            int res = Integer.MAX_VALUE;
            for (int op = 0; op < 32; op++) { // 5位数 转换成2进制最大的数是32
                for (int i = 0; i < 5; i++) {
                    backup[i] = g[i].clone();
                }
                int step = 0;
                // 对第一行状态的判断
                for (int i = 0; i < 5; i++) {
                    if ((op >> i & 1) == 0) { // 判断i的二进制的第几位是不是1
                        step++;
                        turn(0, 4 - i);
                    }
                }
                // 对2,3,4行判断
                for (int i = 0; i < 4; i++){
                    for (int j = 0; j < 5; j++){
                        if (g[i][j] == '0') {
                            step++;
                            turn(i + 1, j);
                        }
                    }
                }
                boolean dark = false;
                // 对最后一行特判
                for (int i = 0; i < 5; i++) {
                    if (g[4][i] == '0') {
                        dark = true;
                        break;
                    }
                }
                if (!dark) res = Math.min(res, step);
                for (int i = 0; i < 5; i++) {
                    g[i] = backup[i].clone();
                }
            }
            if (res > 6) res = -1;
            System.out.println(res);
        }
    }
    // 利用偏移量改变5个位置的值
    private static void turn(int x, int y) {
        for (int i = 0; i < 5; i++) {
            int a = x + dx[i];
            int b = y + dy[i];
            if (a < 0 || a >= 5 || b < 0 || b >= 5) continue; // 在边界外,直接忽略即可
            g[a][b] ^= 1; // 异或运算
        }
    }
}

Acwing 1208.翻硬币

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值