Jordan标准形5——Jordan标准形的由来

本篇内容摘自 The Linear Algebra a Beginning Graduate Student Ought to Know (Second Edition) P276

对于线性空间 V V V上的线性变换 α \alpha α 和向量 v v v, 我们给出空间 V V V 上由 α \alpha α v v v 定义的 Krylov subspace 的定义, 显然其是不变子空间
在这里插入图片描述
当定义中的 v 0 v_{0} v0 取特征向量时, Krylov subspace 为一维向量空间, 反之也成立
在这里插入图片描述
在这里插入图片描述
α \alpha α 是线性空间 V V V 上阶数为 k k k 的幂零变换, 则存在由 α \alpha α V V V 上的某个向量 ω \omega ω 确定的 Krylov subspace F [ α ] ω F[\alpha]\omega F[α]ω, 其维数为 k k k .
在这里插入图片描述
证明请见:Jordan标准形(番外篇)——Jordan矩阵的由来篇定理证明补充1

在定理13.2的基础上进一步证明 Krylov subspace F [ α ] ω F[\alpha]\omega F[α]ω 的补空间在 α \alpha α 下是不变子空间
在这里插入图片描述
证明请见:Jordan标准形(番外篇)——Jordan矩阵的由来篇定理证明补充2

在这里插入图片描述

在定理13.4中我们证明: 对于线性空间 V V V上的幂零变换 α \alpha α, 线性空间 V V V 可以写成若干个由 α \alpha α V V V中某个向量定义的 Krylov subspace 的直和的形式.
根据博客 Jordan标准形(番外篇)——不可对角化的线性变换和线性空间的关系,提取每个 Krylov subspace 的基, 构成线性空间 V V V 的一组基, α \alpha α 在这组基下的矩阵可以写成分块对角阵, 可以验证, 每个分块对角阵都是主对角元为0的Jordan块.

在这里插入图片描述
在这里插入图片描述
下面我们定义线性变换特征值对应的广义特征向量
在这里插入图片描述
证明每个特征值对应的广义特征向量, 加上0向量, 构成一个线性子空间, 称为广义特征空间.
在这里插入图片描述
向量 v v v 是特征值 c c c 对应的一个阶数为 k k k 的广义特征向量, 证明由线性变换 α − c σ 1 \alpha-c\sigma_{1} αcσ1 和向量 v v v 定义的 Krylov subspace 是 k k k 维的.
在这里插入图片描述
下面我们证明: α \alpha α是线性空间 V V V上的线性变换(不再要求是幂零变换), 在某一组基下的矩阵是 X X X, 其特征值为 { c 1 , … , c m } \{c_{1},\dots,c_{m}\} {c1,,cm}, 可以证明, V V V 可以写成每个特征值对应的广义特征子空间的直和的形式.
根据博客 Jordan标准形(番外篇)——不可对角化的线性变换和线性空间的关系 存在一组基, 使得 V V V在这组基下的矩阵为分块对角阵, 可以证明, 可以找到一组基, 使得每个块为主对角元素为各个特征值的Jordan块.

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

文中涉及的一些概念:
1)
在这里插入图片描述
2)
在这里插入图片描述
3)
在这里插入图片描述
4)
在这里插入图片描述
5)
在这里插入图片描述
6)
在这里插入图片描述
7)
在这里插入图片描述
8)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值