matlab 线性方程 lu分解法_矩阵与数值计算(三)——Schur标准型和Jordan分解

本文介绍了矩阵的Schur标准型和Jordan分解,探讨了矩阵的代数重数、几何重数与特征值的关系。针对不可相似对角化的矩阵,通过Jordan分解提供了解决方案,并详细阐述了Jordan标准块和Jordan标准型的求解方法,最后提到了Hamilton-Cayley定理的应用。
摘要由CSDN通过智能技术生成

14bd0051ff8f141bca74d736d991c8a3.png

前言

之前介绍过几种矩阵分解方法,都可以有效的提升矩阵方程的数值求解问题,其中LU分解尤其适合于中小型、稠密矩阵的求解问题。我们最理想的矩阵就是可相似对角化的矩阵,直接可以分解成两个酉矩阵和一个对角矩阵的形式,那么如果一个矩阵不符合可相似对角化的条件应该怎么解决呢?这里提出Jordan分解,提供了对不可相似对角化矩阵的分解解决方案。

一、Schur标准型

  1. 定义

给定一个矩阵A,可以通过相似正交变换成一个上三角矩阵(任意n阶方阵),其实可以将LU分解中的L进行施密特正交化。

,其中R是上三角矩阵,U是酉矩阵。

上面将X分解为UR,其中U是酉矩阵,R是上三角矩阵。那么我们可以得出Schur分解的定义。

1b041cfa810ff885da573cb52966b04d.png
Schur分解

任意n阶方阵,酉相似于一个以其特征值为对角元的上三角矩阵R。

2. 特殊矩阵的特征系统

由Schur定理可以自然想到,什么样的矩阵会酉相似于对角矩阵呢?答案是正规矩阵。

正规矩阵

,若
,则称
为正规矩阵。

H这里表示共轭,类比于实数矩阵的转置的概念,因为矩阵中会包含虚数,所以使用H表示共轭。

Hermite矩阵:

斜Hermite矩阵:

酉阵:

对于上面这四种特殊的矩阵,对应的R各有不同,这里直接可以记忆结论:

  • A为正规矩阵,R是对角矩阵。
  • A为Hermi
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值