2014年IMO几何预选题第3题

△ A B C \triangle ABC ABC 中, M M M 为弧 B C BC BC (不含点 A A A) 的中点. 过外心 O O O A B AB AB, A C AC AC 的垂线, 分别交以 A M AM AM 为直径的圆于点 P P P, Q Q Q. 设 P Q PQ PQ A M AM AM 的中垂线交于点 R R R. 求证: A R / / B C AR//BC AR//BC.

在这里插入图片描述

证明:

在这里插入图片描述

设点 O O O A C AC AC, A B AB AB 上的投影点分别为 O B O_B OB, O C O_C OC. 设 A M AM AM 中点为 E ( E ( E( 显然其为 ( A P Q ) (APQ) (APQ) 的圆心). 作出以 O A OA OA, O M OM OM 为直径的两圆 c 1 c_1 c1, c 2 c_2 c2, 设前者交 ( A P Q ) (APQ) (APQ) A A A, K K K, 设后者交 ( A P Q ) (APQ) (APQ) M M M, L L L.

显然, A A A, K K K, O C O_C OC, O O O, E E E, O B O_B OB c 1 c_1 c1 上, L L L, M M M, E E E, O O O c 2 c_2 c2 上.

∠ A K O = ∠ A K M = π 2 \angle AKO=\angle AKM=\frac{\pi}{2} AKO=AKM=2π, 所以 M M M, O O O, K K K 共线.

同理, A A A, O O O, L L L 共线.

由根心定理, O E OE OE, A K AK AK, L M LM LM 三线共点, 记为 R ′ R' R.

显然, A K / / B C AK//BC AK//BC.

若能证明 P P P, Q Q Q, E E E, O O O 共圆, 则由根心定理, P Q PQ PQ 也过 E O EO EO, L M LM LM 的交点, 即 R ′ R' R. R R R R ′ R' R 都是 O E OE OE 中垂线与 P Q PQ PQ 的交点, R R R R ′ R' R, 进而 A R / / B C AR//BC AR//BC. 下面证明: P P P, Q Q Q, E E E, O O O 共圆.

在这里插入图片描述

延长 Q O QO QO ( A P Q ) (APQ) (APQ) 于点 Q ′ Q' Q.

∠ P Q R ′ = E A O C = A / 2 \angle PQR'=EAO_C=A/2 PQR=EAOC=A/2, ∠ Q O E = ∠ E A O B = A / 2 \angle QOE=\angle EAO_B=A/2 QOE=EAOB=A/2.

∠ Q ′ O R ′ = ∠ Q O E = A / 2 = ∠ P O R ′ \angle Q'OR'=\angle QOE=A/2=\angle POR' QOR=QOE=A/2=POR. 显然, O E OE OE ( A P Q ) (APQ) (APQ) 的一条对称轴, 由此易知 P P P, Q ′ Q' Q 关于 O E OE OE 对称.

∠ P E O = 2 ∠ P Q ′ Q = 2 ( π 2 − A / 2 ) = π − A = ∠ P O Q \angle PEO=2\angle PQ'Q=2(\frac{\pi}{2}-A/2)=\pi-A=\angle POQ PEO=2∠PQQ=2(2πA/2)=πA=POQ.

∴ P \therefore P P, Q Q Q, E E E, O O O 共圆.

证毕.

完成时间: 2024/12/30

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值