2006年IMO几何预选题第9题

A 1 A_{1} A1, B 1 B_{1} B1, C 1 C_{1} C1 分别是 △ A B C \triangle ABC ABC 三边 B C BC BC, C A CA CA, A B AB AB 上的点, △ A B 1 C 1 \triangle AB_{1} C_{1} AB1C1, △ B C 1 A 1 \triangle BC_{1} A_{1} BC1A1, △ C A 1 B 1 \triangle CA_{1} B_{1} CA1B1 的外接圆与 △ A B C \triangle ABC ABC 的外接圆分别交于另一点 A 2 A_{2} A2, B 2 B_{2} B2, C 2 C_{2} C2. A 3 A_{3} A3, B 3 B_{3} B3, C 3 C_{3} C3 分别是 A 1 A_{1} A1, B 1 B_{1} B1, C 1 C_{1} C1 关于边 B C BC BC, C A CA CA, A B AB AB 的中点的对称点. 求证:
△ A 2 B 2 C 2 ∼ △ A 3 B 3 C 3 \triangle A_{2} B_{2} C_{2} \sim \triangle A_{3} B_{3} C_{3} A2B2C2A3B3C3.
在这里插入图片描述

证明:

在这里插入图片描述

显然, △ B 2 C 1 A ∼ △ B 2 A 1 C \triangle B_2C_1A \sim \triangle B_2A_1C B2C1AB2A1C.

∴ B 2 C 1 / B 2 A 1 = A C 1 / C A 1 = B C 3 / B A 3 \therefore B_2C_1/B_2A_1=AC_1/CA_1=BC_3/BA_3 B2C1/B2A1=AC1/CA1=BC3/BA3.

∠ C 1 B 2 A 1 = ∠ A B C \angle C_1B_2A_1=\angle ABC C1B2A1=ABC.

∴ △ C 1 B 2 A 1 ∼ △ C 3 B A 3 \therefore \triangle C_1B_2A_1 \sim \triangle C_3BA_3 C1B2A1C3BA3.

可类似地证明 △ B 1 C 2 A 1 ∼ △ B 1 C A 1 \triangle B_1C_2A_1 \sim \triangle B_1CA_1 B1C2A1B1CA1.

∠ B 2 B C = ∠ B 2 C 1 A 1 = ∠ B C 3 A 3 \angle B_2BC=\angle B_2C_1A_1=\angle BC_3A_3 B2BC=B2C1A1=BC3A3.

∠ C 2 C A 1 = ∠ C 2 B 1 A 1 = ∠ C B 3 A 3 \angle C_2CA_1=\angle C_2B_1A_1=\angle CB_3A_3 C2CA1=C2B1A1=CB3A3.

易知 ∠ B 2 A 2 C 2 = ∠ B C 3 A 3 + ∠ C B 3 A 3 − ∠ B A C \angle B_2A_2C_2=\angle BC_3A_3+\angle CB_3A_3-\angle BAC B2A2C2=BC3A3+CB3A3BAC.

∠ C 3 A 3 B 3 = ∠ B C 3 A 3 + ∠ C B 3 A 3 − ∠ B A C \angle C_3A_3B_3=\angle BC_3A_3+\angle CB_3A_3-\angle BAC C3A3B3=BC3A3+CB3A3BAC.

∴ \therefore ∠ B 2 A 2 C 2 = ∠ B 3 A 3 A 3 \angle B_2A_2C_2=\angle B_3A_3A_3 B2A2C2=B3A3A3.

类似地, 可以证明 ∠ B 2 C 2 A 2 = ∠ B 3 C 3 A 3 \angle B_2C_2A_2=\angle B_3C_3A_3 B2C2A2=B3C3A3.

∴ \therefore △ A 2 B 2 C 2 ∼ △ A 3 B 3 A 3 \triangle A_2B_2C_2 \sim \triangle A_3B_3A_3 A2B2C2A3B3A3.

2025年1月6日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值