高中数学联赛模拟试题精选学数学系列第6套几何题

△ A B C \triangle ABC ABC 的边 B C BC BC 的中点为点 M M M. 点 E E E, F F F 分别是 M M M 关于 A C AC AC, A B AB AB 的对称点, 只需 B F BF BF C E CE CE 交于点 P P P. 点 Q Q Q 满足 Q A = Q M QA=QM QA=QM ∠ Q A P = π 2 \angle QAP = \frac{\pi}{2} QAP=2π. 点 Q Q Q △ P E F \triangle PEF PEF 的外心. 求证: ∠ A O Q = π 2 \angle AOQ = \frac{\pi}{2} AOQ=2π. (《高中数学联赛模拟试题精选》"学数学"系列第6套)

在这里插入图片描述

证明:
在这里插入图片描述

∠ F A E = 2 ∠ B A C \angle FAE=2\angle BAC FAE=2∠BAC.

∠ F P E = π − ∠ P B C − ∠ P C B = π − ( π − 2 ∠ A B C ) − ( π − 2 ∠ A C B ) = 2 ∠ A B C + 2 ∠ A C B − π \angle FPE=\pi-\angle PBC-\angle PCB=\pi-(\pi-2\angle ABC)-(\pi-2\angle ACB)=2\angle ABC+2\angle ACB-\pi FPE=πPBCPCB=π(π2∠ABC)(π2∠ACB)=2∠ABC+2∠ACBπ.

∠ F A E + ∠ F P E = 2 ∠ A B C + 2 ∠ A C B + 2 ∠ B A C − π = π \angle FAE+\angle FPE=2\angle ABC+2\angle ACB+2\angle BAC-\pi=\pi FAE+FPE=2∠ABC+2∠ACB+2∠BACπ=π.

所以 F F F, A A A, E E E, P P P 共圆.

A M AM AM 的中点为 K K K, 延长 A O AO AO ( F A E ) (FAE) (FAE) 于点 L L L.

∠ L F B = ∠ L E C \angle LFB=\angle LEC LFB=LEC ; F B = B M = M C = E C FB=BM=MC=EC FB=BM=MC=EC ; 由 ∠ A F L = ∠ A E L = π 2 \angle AFL=\angle AEL=\frac{\pi}{2} AFL=AEL=2π, A E = A F AE=AF AE=AF 可知 △ A F L ≃ △ A E L \triangle AFL \simeq \triangle AEL AFLAEL, 所以 L F = L E LF=LE LF=LE, 综上, △ L F B ≃ △ L E C \triangle LFB \simeq \triangle LEC LFBLEC, 进而 L B = L C LB=LC LB=LC.

L B = L C LB=LC LB=LC, M M M B C BC BC 的中点, 所以 L M ⊥ B C LM \bot BC LMBC.

显然 K O KO KO △ A M L \triangle AML AML 的中位线, 所以 K O / / L M KO//LM KO//LM, 进而 K O ⊥ B C KO \bot BC KOBC.

∠ K O A = ∠ M L A \angle KOA=\angle MLA KOA=MLA.

∠ O A P = ∠ O A F − ∠ F A P = π 2 − ∠ A E F − ∠ F E P = π 2 − ∠ A E P = π 2 − ∠ A M C \angle OAP=\angle OAF-\angle FAP=\frac{\pi}{2}-\angle AEF-\angle FEP=\frac{\pi}{2}-\angle AEP=\frac{\pi}{2}-\angle AMC OAP=OAFFAP=2πAEFFEP=2πAEP=2πAMC.

∠ O A P + ∠ A M C = π 2 \angle OAP+\angle AMC=\frac{\pi}{2} OAP+AMC=2π.

∠ O A P + ∠ A M L = π \angle OAP+\angle AML=\pi OAP+AML=π.

∠ A L M + ∠ M A L = π − ∠ A M L = ∠ O A P = ∠ P A M + ∠ M A L \angle ALM+\angle MAL=\pi-\angle AML=\angle OAP=\angle PAM+\angle MAL ALM+MAL=πAML=OAP=PAM+MAL, 所以 ∠ M A P = ∠ M L A \angle MAP=\angle MLA MAP=MLA.

∠ K O A = ∠ M L A = ∠ M A P \angle KOA=\angle MLA=\angle MAP KOA=MLA=MAP.

∠ K Q A = π 2 − ∠ K A Q = ∠ M A P = ∠ K O A \angle KQA=\frac{\pi}{2}-\angle KAQ=\angle MAP=\angle KOA KQA=2πKAQ=MAP=KOA, 所以 K K K, A A A, Q Q Q, O O O 四点共圆, 进而 ∠ A O Q = ∠ A K Q = π 2 \angle AOQ=\angle AKQ=\frac{\pi}{2} AOQ=AKQ=2π.

证毕.

完稿时间: 2025年5月3日.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值