在直角
△
A
B
C
\triangle ABC
△ABC 中,
∠
B
A
C
=
π
2
\angle BAC=\frac{\pi}{2}
∠BAC=2π,
H
H
H 为
C
C
C 在
A
B
AB
AB 边的投影,
A
D
AD
AD 被
C
H
CH
CH 平分, 设以
B
D
BD
BD 为直径的圆为
c
c
c. 延长
B
D
BD
BD 交
C
H
CH
CH 于
P
P
P, 过
P
P
P 的
c
c
c 的切线切
c
c
c 于
Q
(
Q(
Q( 靠近
C
C
C 的一侧). 求证:
C
Q
CQ
CQ 和
B
D
BD
BD 交于
c
c
c 上.
证明:
设
c
c
c 交
A
B
AB
AB 于点
E
E
E. 显然
D
E
⊥
A
B
DE \bot AB
DE⊥AB.
由 A H AH AH 平分 A D AD AD 可知 A H = H E AH=HE AH=HE. △ A C E \triangle ACE △ACE 为等腰三角形.
延长 C E CE CE 交 c c c 于点 S S S.
∠ C P B = ∠ P B A + π 2 \angle CPB=\angle PBA+\frac{\pi}{2} ∠CPB=∠PBA+2π
∠ E S B = ∠ D B E + π 2 \angle ESB=\angle DBE+\frac{\pi}{2} ∠ESB=∠DBE+2π
所以 ∠ C P B = ∠ E S B \angle CPB=\angle ESB ∠CPB=∠ESB
所以 C C C, P P P, S S S, B B B 共圆.
∠ C S P = ∠ C B P \angle CSP=\angle CBP ∠CSP=∠CBP
∠ E B S = π − ∠ E S B − ∠ S E B \angle EBS=\pi-\angle ESB-\angle SEB ∠EBS=π−∠ESB−∠SEB
∠ S E B = ∠ C E A = ∠ C A E = ∠ H C B \angle SEB=\angle CEA=\angle CAE=\angle HCB ∠SEB=∠CEA=∠CAE=∠HCB
由此易知 ∠ E B S = ∠ P S C \angle EBS=\angle PSC ∠EBS=∠PSC
所以 P S PS PS 切 c c c 于点 S S S.
∠ P O S = 2 ( ∠ D B E + ∠ E B S ) = 2 ( ∠ D B E + ∠ P B C ) = 2 ∠ C B A \angle POS=2(\angle DBE+\angle EBS)=2(\angle DBE+\angle PBC)=2\angle CBA ∠POS=2(∠DBE+∠EBS)=2(∠DBE+∠PBC)=2∠CBA
延长 A D AD AD 交 c c c 于 R R R. 设 C R CR CR 交 c c c 于 R R R, Q ′ Q' Q′.
∠ D R B = π 2 \angle DRB=\frac{\pi}{2} ∠DRB=2π
所以 A A A, C C C, R R R, B B B 共圆.
∠ C R A = ∠ C B A \angle CRA=\angle CBA ∠CRA=∠CBA
设 c c c 的圆心为 O O O
∠ Q ′ O P = 2 ∠ Q ′ O D = 2 ∠ C B A = ∠ S O D \angle Q'OP=2\angle Q'OD=2\angle CBA=\angle SOD ∠Q′OP=2∠Q′OD=2∠CBA=∠SOD. 由此可知 P Q ′ PQ' PQ′ 切 c c c 于 Q ′ Q' Q′. Q ′ Q' Q′ 即为 Q Q Q.
证毕.
2025年1月16日