2015年IMO几何预选题第3题

在直角 △ A B C \triangle ABC ABC 中, ∠ B A C = π 2 \angle BAC=\frac{\pi}{2} BAC=2π, H H H C C C A B AB AB 边的投影, A D AD AD C H CH CH 平分, 设以 B D BD BD 为直径的圆为 c c c. 延长 B D BD BD C H CH CH P P P, 过 P P P c c c 的切线切 c c c Q ( Q( Q( 靠近 C C C 的一侧). 求证: C Q CQ CQ B D BD BD 交于 c c c 上.
在这里插入图片描述

证明:

在这里插入图片描述
c c c A B AB AB 于点 E E E. 显然 D E ⊥ A B DE \bot AB DEAB.

A H AH AH 平分 A D AD AD 可知 A H = H E AH=HE AH=HE. △ A C E \triangle ACE ACE 为等腰三角形.

延长 C E CE CE c c c 于点 S S S.

∠ C P B = ∠ P B A + π 2 \angle CPB=\angle PBA+\frac{\pi}{2} CPB=PBA+2π

∠ E S B = ∠ D B E + π 2 \angle ESB=\angle DBE+\frac{\pi}{2} ESB=DBE+2π

所以 ∠ C P B = ∠ E S B \angle CPB=\angle ESB CPB=ESB

所以 C C C, P P P, S S S, B B B 共圆.

∠ C S P = ∠ C B P \angle CSP=\angle CBP CSP=CBP

∠ E B S = π − ∠ E S B − ∠ S E B \angle EBS=\pi-\angle ESB-\angle SEB EBS=πESBSEB

∠ S E B = ∠ C E A = ∠ C A E = ∠ H C B \angle SEB=\angle CEA=\angle CAE=\angle HCB SEB=CEA=CAE=HCB

由此易知 ∠ E B S = ∠ P S C \angle EBS=\angle PSC EBS=PSC

所以 P S PS PS c c c 于点 S S S.

∠ P O S = 2 ( ∠ D B E + ∠ E B S ) = 2 ( ∠ D B E + ∠ P B C ) = 2 ∠ C B A \angle POS=2(\angle DBE+\angle EBS)=2(\angle DBE+\angle PBC)=2\angle CBA POS=2(DBE+EBS)=2(DBE+PBC)=2∠CBA

延长 A D AD AD c c c R R R. 设 C R CR CR c c c R R R, Q ′ Q' Q.

∠ D R B = π 2 \angle DRB=\frac{\pi}{2} DRB=2π

所以 A A A, C C C, R R R, B B B 共圆.

∠ C R A = ∠ C B A \angle CRA=\angle CBA CRA=CBA

c c c 的圆心为 O O O

∠ Q ′ O P = 2 ∠ Q ′ O D = 2 ∠ C B A = ∠ S O D \angle Q'OP=2\angle Q'OD=2\angle CBA=\angle SOD QOP=2∠QOD=2∠CBA=SOD. 由此可知 P Q ′ PQ' PQ c c c Q ′ Q' Q. Q ′ Q' Q 即为 Q Q Q.

证毕.

2025年1月16日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值