在 △ABC\triangle ABC△ABC 中, AAA 的对径点为 A′A'A′, 和 ABABAB, ACACAC, (ABC)(ABC)(ABC) 都相切的圆分别为 c1(c_1(c1( 外接圆内), c2(c_2(c2( 外接圆外), 设 c1c_1c1, c2c_2c2 和外接圆的切点分别为 XXX, YYY. MMM 是不含 AAA 的弧 BCBCBC 的中点. 外接圆在 XXX, YYY 处的切线交于 TTT. 求证: A′A'A′, MMM, TTT 共线.
证明:
设弧 BACBACBAC 的中点为 NNN. 设 △ABC\triangle ABC△ABC 的外接圆半径为 RRR
c1c_1c1 为伪内切圆, c2c_2c2 为伪旁切圆, 由伪内切圆, 伪旁切圆的性质可知, NNN, III, XXX 共线, NNN, JaJ_aJa, YYY 共线.
只需证明: 四边形 A′YMXA'YMXA′YMX 是调和四边形, 即 A′Y/MY=A′X/MXA'Y/MY=A'X/MXA′Y/MY=A′X/MX.
设 III, JaJ_aJa 在 SMSMSM 上的投影分别为 I′I'I′, Ja′J_a'Ja′.
∠NAM=∠NXM=π2\angle NAM=\angle NXM=\frac{\pi}{2}∠NAM=∠NXM=2π
所以 I′I'I′, III, XXX, MMM 共圆(直径为 MIMIMI 设半径为 R′R'R′). NNN, AAA, III, I′I'I′ 共圆.
∠XI′A=∠II′A+∠II′X=2∠ANX=∠AOX\angle XI'A=\angle II'A+\angle II'X=2\angle ANX=\angle AOX∠XI′A=∠II′A+∠II′X=2∠ANX=∠AOX.
所以 AAA, OOO, I′I'I′, XXX 共圆.
A′X=2Rcos∠ANXA'X=2R\cos\angle ANXA′X=2Rcos∠ANX
MX=2R′sin∠MI′X=2R′cos∠ANXMX=2R'\sin \angle MI'X=2R'\cos\angle ANXMX=2R′sin∠MI′X=2R′cos∠ANX
A′X/MX=R/R′A'X/MX=R/R'A′X/MX=R/R′
∠NYM=π2\angle NYM=\frac{\pi}{2}∠NYM=2π
由内心和旁心的性质可知, MJa=MI=2R′MJ_a=MI=2R'MJa=MI=2R′
A′Y=2Rcos∠YA′M=2Rcos∠ANYA'Y=2R\cos \angle YA'M=2R\cos \angle ANYA′Y=2Rcos∠YA′M=2Rcos∠ANY.
MY=2R′cos∠YMJa=2R′cos∠ANYMY=2R'\cos\angle YMJ_a=2R'\cos\angle ANYMY=2R′cos∠YMJa=2R′cos∠ANY.
A′Y/MY=R/R′=A′X/MXA'Y/MY=R/R'=A'X/MXA′Y/MY=R/R′=A′X/MX.
证毕.
拓展: 设 JaJ_aJa 在 NMNMNM 上的投影为 Ja′J_a'Ja′, 可证明 YYY, MMM, Ja′J_a'Ja′, JaJ_aJa 共圆, AAA, OOO, YYY, Ja′J_a'Ja′ 共圆
2025年1月16日