2015年中国台湾数学奥林匹克几何试题

△ABC\triangle ABCABC 中, AAA 的对径点为 A′A'A, 和 ABABAB, ACACAC, (ABC)(ABC)(ABC) 都相切的圆分别为 c1(c_1(c1( 外接圆内), c2(c_2(c2( 外接圆外), 设 c1c_1c1, c2c_2c2 和外接圆的切点分别为 XXX, YYY. MMM 是不含 AAA 的弧 BCBCBC 的中点. 外接圆在 XXX, YYY 处的切线交于 TTT. 求证: A′A'A, MMM, TTT 共线.

在这里插入图片描述

证明:

在这里插入图片描述
设弧 BACBACBAC 的中点为 NNN. 设 △ABC\triangle ABCABC 的外接圆半径为 RRR

c1c_1c1 为伪内切圆, c2c_2c2 为伪旁切圆, 由伪内切圆, 伪旁切圆的性质可知, NNN, III, XXX 共线, NNN, JaJ_aJa, YYY 共线.

只需证明: 四边形 A′YMXA'YMXAYMX 是调和四边形, 即 A′Y/MY=A′X/MXA'Y/MY=A'X/MXAY/MY=AX/MX.

III, JaJ_aJaSMSMSM 上的投影分别为 I′I'I, Ja′J_a'Ja.

∠NAM=∠NXM=π2\angle NAM=\angle NXM=\frac{\pi}{2}NAM=NXM=2π

所以 I′I'I, III, XXX, MMM 共圆(直径为 MIMIMI 设半径为 R′R'R). NNN, AAA, III, I′I'I 共圆.

∠XI′A=∠II′A+∠II′X=2∠ANX=∠AOX\angle XI'A=\angle II'A+\angle II'X=2\angle ANX=\angle AOXXIA=IIA+IIX=2∠ANX=AOX.

所以 AAA, OOO, I′I'I, XXX 共圆.

A′X=2Rcos⁡∠ANXA'X=2R\cos\angle ANXAX=2RcosANX

MX=2R′sin⁡∠MI′X=2R′cos⁡∠ANXMX=2R'\sin \angle MI'X=2R'\cos\angle ANXMX=2RsinMIX=2RcosANX

A′X/MX=R/R′A'X/MX=R/R'AX/MX=R/R

∠NYM=π2\angle NYM=\frac{\pi}{2}NYM=2π

由内心和旁心的性质可知, MJa=MI=2R′MJ_a=MI=2R'MJa=MI=2R

A′Y=2Rcos⁡∠YA′M=2Rcos⁡∠ANYA'Y=2R\cos \angle YA'M=2R\cos \angle ANYAY=2RcosYAM=2RcosANY.

MY=2R′cos⁡∠YMJa=2R′cos⁡∠ANYMY=2R'\cos\angle YMJ_a=2R'\cos\angle ANYMY=2RcosYMJa=2RcosANY.

A′Y/MY=R/R′=A′X/MXA'Y/MY=R/R'=A'X/MXAY/MY=R/R=AX/MX.

证毕.

拓展: 设 JaJ_aJaNMNMNM 上的投影为 Ja′J_a'Ja, 可证明 YYY, MMM, Ja′J_a'Ja, JaJ_aJa 共圆, AAA, OOO, YYY, Ja′J_a'Ja 共圆

2025年1月16日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值