2015年中国台湾数学奥林匹克几何试题

△ A B C \triangle ABC ABC 中, A A A 的对径点为 A ′ A' A, 和 A B AB AB, A C AC AC, ( A B C ) (ABC) (ABC) 都相切的圆分别为 c 1 ( c_1( c1( 外接圆内), c 2 ( c_2( c2( 外接圆外), 设 c 1 c_1 c1, c 2 c_2 c2 和外接圆的切点分别为 X X X, Y Y Y. M M M 是不含 A A A 的弧 B C BC BC 的中点. 外接圆在 X X X, Y Y Y 处的切线交于 T T T. 求证: A ′ A' A, M M M, T T T 共线.

在这里插入图片描述

证明:

在这里插入图片描述
设弧 B A C BAC BAC 的中点为 N N N. 设 △ A B C \triangle ABC ABC 的外接圆半径为 R R R

c 1 c_1 c1 为伪内切圆, c 2 c_2 c2 为伪旁切圆, 由伪内切圆, 伪旁切圆的性质可知, N N N, I I I, X X X 共线, N N N, J a J_a Ja, Y Y Y 共线.

只需证明: 四边形 A ′ Y M X A'YMX AYMX 是调和四边形, 即 A ′ Y / M Y = A ′ X / M X A'Y/MY=A'X/MX AY/MY=AX/MX.

I I I, J a J_a Ja S M SM SM 上的投影分别为 I ′ I' I, J a ′ J_a' Ja.

∠ N A M = ∠ N X M = π 2 \angle NAM=\angle NXM=\frac{\pi}{2} NAM=NXM=2π

所以 I ′ I' I, I I I, X X X, M M M 共圆(直径为 M I MI MI 设半径为 R ′ R' R). N N N, A A A, I I I, I ′ I' I 共圆.

∠ X I ′ A = ∠ I I ′ A + ∠ I I ′ X = 2 ∠ A N X = ∠ A O X \angle XI'A=\angle II'A+\angle II'X=2\angle ANX=\angle AOX XIA=IIA+IIX=2∠ANX=AOX.

所以 A A A, O O O, I ′ I' I, X X X 共圆.

A ′ X = 2 R cos ⁡ ∠ A N X A'X=2R\cos\angle ANX AX=2RcosANX

M X = 2 R ′ sin ⁡ ∠ M I ′ X = 2 R ′ cos ⁡ ∠ A N X MX=2R'\sin \angle MI'X=2R'\cos\angle ANX MX=2RsinMIX=2RcosANX

A ′ X / M X = R / R ′ A'X/MX=R/R' AX/MX=R/R

∠ N Y M = π 2 \angle NYM=\frac{\pi}{2} NYM=2π

由内心和旁心的性质可知, M J a = M I = 2 R ′ MJ_a=MI=2R' MJa=MI=2R

A ′ Y = 2 R cos ⁡ ∠ Y A ′ M = 2 R cos ⁡ ∠ A N Y A'Y=2R\cos \angle YA'M=2R\cos \angle ANY AY=2RcosYAM=2RcosANY.

M Y = 2 R ′ cos ⁡ ∠ Y M J a = 2 R ′ cos ⁡ ∠ A N Y MY=2R'\cos\angle YMJ_a=2R'\cos\angle ANY MY=2RcosYMJa=2RcosANY.

A ′ Y / M Y = R / R ′ = A ′ X / M X A'Y/MY=R/R'=A'X/MX AY/MY=R/R=AX/MX.

证毕.

拓展: 设 J a J_a Ja N M NM NM 上的投影为 J a ′ J_a' Ja, 可证明 Y Y Y, M M M, J a ′ J_a' Ja, J a J_a Ja 共圆, A A A, O O O, Y Y Y, J a ′ J_a' Ja 共圆

2025年1月16日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值