在 △ A B C \triangle ABC △ABC 中, A A A 的对径点为 A ′ A' A′, 和 A B AB AB, A C AC AC, ( A B C ) (ABC) (ABC) 都相切的圆分别为 c 1 ( c_1( c1( 外接圆内), c 2 ( c_2( c2( 外接圆外), 设 c 1 c_1 c1, c 2 c_2 c2 和外接圆的切点分别为 X X X, Y Y Y. M M M 是不含 A A A 的弧 B C BC BC 的中点. 外接圆在 X X X, Y Y Y 处的切线交于 T T T. 求证: A ′ A' A′, M M M, T T T 共线.
证明:
设弧
B
A
C
BAC
BAC 的中点为
N
N
N. 设
△
A
B
C
\triangle ABC
△ABC 的外接圆半径为
R
R
R
c 1 c_1 c1 为伪内切圆, c 2 c_2 c2 为伪旁切圆, 由伪内切圆, 伪旁切圆的性质可知, N N N, I I I, X X X 共线, N N N, J a J_a Ja, Y Y Y 共线.
只需证明: 四边形 A ′ Y M X A'YMX A′YMX 是调和四边形, 即 A ′ Y / M Y = A ′ X / M X A'Y/MY=A'X/MX A′Y/MY=A′X/MX.
设 I I I, J a J_a Ja 在 S M SM SM 上的投影分别为 I ′ I' I′, J a ′ J_a' Ja′.
∠ N A M = ∠ N X M = π 2 \angle NAM=\angle NXM=\frac{\pi}{2} ∠NAM=∠NXM=2π
所以 I ′ I' I′, I I I, X X X, M M M 共圆(直径为 M I MI MI 设半径为 R ′ R' R′). N N N, A A A, I I I, I ′ I' I′ 共圆.
∠ X I ′ A = ∠ I I ′ A + ∠ I I ′ X = 2 ∠ A N X = ∠ A O X \angle XI'A=\angle II'A+\angle II'X=2\angle ANX=\angle AOX ∠XI′A=∠II′A+∠II′X=2∠ANX=∠AOX.
所以 A A A, O O O, I ′ I' I′, X X X 共圆.
A ′ X = 2 R cos ∠ A N X A'X=2R\cos\angle ANX A′X=2Rcos∠ANX
M X = 2 R ′ sin ∠ M I ′ X = 2 R ′ cos ∠ A N X MX=2R'\sin \angle MI'X=2R'\cos\angle ANX MX=2R′sin∠MI′X=2R′cos∠ANX
A ′ X / M X = R / R ′ A'X/MX=R/R' A′X/MX=R/R′
∠ N Y M = π 2 \angle NYM=\frac{\pi}{2} ∠NYM=2π
由内心和旁心的性质可知, M J a = M I = 2 R ′ MJ_a=MI=2R' MJa=MI=2R′
A ′ Y = 2 R cos ∠ Y A ′ M = 2 R cos ∠ A N Y A'Y=2R\cos \angle YA'M=2R\cos \angle ANY A′Y=2Rcos∠YA′M=2Rcos∠ANY.
M Y = 2 R ′ cos ∠ Y M J a = 2 R ′ cos ∠ A N Y MY=2R'\cos\angle YMJ_a=2R'\cos\angle ANY MY=2R′cos∠YMJa=2R′cos∠ANY.
A ′ Y / M Y = R / R ′ = A ′ X / M X A'Y/MY=R/R'=A'X/MX A′Y/MY=R/R′=A′X/MX.
证毕.
拓展: 设 J a J_a Ja 在 N M NM NM 上的投影为 J a ′ J_a' Ja′, 可证明 Y Y Y, M M M, J a ′ J_a' Ja′, J a J_a Ja 共圆, A A A, O O O, Y Y Y, J a ′ J_a' Ja′ 共圆
2025年1月16日