高中数学联赛模拟试题精选第9套几何题

△ A B C \triangle ABC ABC 中, A B = A C AB=AC AB=AC, D D D △ A B C \triangle ABC ABC 内一点, 且 ∠ D C B = ∠ D B A \angle DCB=\angle DBA DCB=DBA. E E E, F F F 分别为线段 D B DB DB, D C DC DC 上的点. 求证: 直线 A D AD AD 平分线段 E F EF EF 的充分必要条件是 E E E, B B B, C C C, F F F 四点共圆. (《高中数学联赛模拟试题精选》第9套)

在这里插入图片描述

证明:

在这里插入图片描述

延长 A D AD AD B C BC BC 于点 P P P.

由已知条件可知, ∠ A B D = ∠ D C B \angle ABD=\angle DCB ABD=DCB, ∠ D B C = ∠ A D C \angle DBC=\angle ADC DBC=ADC. 由塞瓦定理, sin ⁡ ∠ D A B / sin ⁡ ∠ D A C = sin ⁡ 2 ∠ D C B / sin ⁡ 2 ∠ D B C = B D 2 / C D 2 = B P / C P \sin \angle DAB/\sin \angle DAC=\sin ^2 \angle DCB/\sin ^2 \angle DBC=BD^2/CD^2=BP/CP sinDAB/sinDAC=sin2DCB/sin2DBC=BD2/CD2=BP/CP.

D P DP DP △ D B C \triangle DBC DBC 的共轭中线.

sin ⁡ ∠ P D B / sin ⁡ ∠ P D C = B P / C P ⋅ C D / B D = B D / C D \sin \angle PDB/\sin \angle PDC=BP/CP \cdot CD/BD=BD/CD sinPDB/sinPDC=BP/CPCD/BD=BD/CD. 若 B B B, E E E, F F F, C C C 共圆, 则 △ D E F ∼ △ D C B \triangle DEF \sim \triangle DCB DEFDCB. 显然 D P DP DP △ D E F \triangle DEF DEF 的中线, A D AD AD 平分 E F EF EF. 若 A D AD AD 平分 E F EF EF, 则 sin ⁡ ∠ E D P / sin ⁡ ∠ F D P = D F / D E = B D / C D \sin \angle EDP/\sin \angle FDP=DF/DE=BD/CD sinEDP/sinFDP=DF/DE=BD/CD. 显然 B B B, E E E, F F F, C C C 共圆, 证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值