九章算法 | 谷歌面试题:超级丑数

本文介绍了一种算法,用于找出特定质数集合内的第n个超级丑数。超级丑数是所有质数因子都在给定质数集合内的正整数。文章提供了两种方法,一种使用小根堆,另一种通过迭代计算,详细解释了每种方法的时间复杂度。

写一个程序来找第 n 个超级丑数。

超级丑数是所有的质数因子都在给定的的质数集合内的正整数。

比如给定质数集合 [2, 7, 13, 19], 那么 [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] 是前 12 个超级丑数。

  • 1 永远都是超级丑数。
  • 0 < k ≤ 100, 0 < n ≤ 10^6, 0 < primes[i] < 1000
  • k是丑数集合的长度

在线评测地址:LintCode 领扣

样例 1:

输入: n = 6, [2,7,13,19]
输出: 13

样例 2:

输入: n = 11, [2,3,5]
输出: 15

【题解】

做法1:

使用小根堆, 初始将1放入堆, 循环 n-1 次, 每次取出堆顶, 然后将该值与素数列表每个数的乘积再次放入堆.

注意可能会有数重复入堆, 所以还需要额外的数据结构记录一个数是否出现过, 把重复的数排除, 以保证取出的堆顶是从小到大的超级丑数.

n-1 次循环之后, 此时的堆顶即是第 n 个丑数.

时间复杂度 O(nklogn)

做法2:

依次求出前n个超级丑数. 定义times[i]表示当前的超级丑数的质因数中, 列表中第i个素数的次数. uglys[i]表示第i+1个素数.

初始 times[i] = 0, uglys[0] = 1, 然后依次由 uglys[0] ~ uglys[i] 求出 uglys[i+1]:

  1. 枚举, 求出 uglys[times[j]] * prime[j] 的最小值, 即是 uglys[i+1]
  2. 更新对应的 times[j], 即 若 uglys[times[j]] * prime[j] == uglys[i+1], times[j]++

时间复杂度 O(nk)

public class Solution {
    /**
     * @param n a positive integer
     * @param primes the given prime list
     * @return the nth super ugly number
     */
    public int nthSuperUglyNumber(int n, int[] primes) {
        int[] times = new int[primes.length];
        int[] uglys = new int[n];
        uglys[0] = 1;


        for (int i = 1; i < n; i++) {
            uglys[i] = Integer.MAX_VALUE;
            for (int j = 0; j < primes.length; j++) {
                uglys[i] = Math.min(uglys[i], primes[j] * uglys[times[j]]);
            }


            for (int j = 0; j < times.length; j++) {
                if (uglys[times[j]] * primes[j] == uglys[i]) {
                    times[j]++;
                }
            }
        }
        return uglys[n - 1];
    }

更多题解参见:九章算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值