将多个annotation xml文件转换为多个annotation txt文件

简介

  • 当我们在使用数据集训练计算机视觉模型时,常常会遇到有的数据集提供了多个annotation xml文件,而YOLO模型所需要的annotation是基于每个图片的txt annotation文件,在这里提供笔者所用的xml文件转txt文件的方法

前期准备

创建项目文件夹

  • 新建文件夹用于储存此项目

创建文件夹用于储存图像和xml标签

此处提供两种方法

  • 代码法
    • 创建python文件并运行以下代码
      import os
      os.makedirs('VOCdevkit/VOC2007/Annotations')
      os.makedirs('VOCdevkit/VOC2007/JPEGImages')
  • 直接法
    • 在项目文件夹内创建文件夹命名为VOCdevkit
    • VOCdevkit文件夹内创建文件夹命名为VOC2007
    • VOC2007文件夹内创建两个文件夹分别命名为AnnotationsJPEGImages
  •  成功后如图所示

 导入图像和xml标签 

  • xml文件全部放入Annotations文件夹下

  

  • 图片全部放入JPEGImages文件夹下

 

进行转换

创建转换代码

  • 在项目文件夹下创建python文件并输入以下代码
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfile


# 根据自己的需求设置类文件
classes = []


# Training ratio
# 根据自己的需求设置训练比
TRAIN_RATIO = 70


# Traversing folders
def clear_hidden_files(path):
    dir_list = os.listdir(path)
    for i in dir_list:
        abspath = os.path.join(os.path.abspath(path), i)
        if os.path.isfile(abspath):
            if i.startswith("._"):
                os.remove(abspath)
        else:
            clear_hidden_files(abspath)

# Normalization of width and height is performed
# Size is the width and height of the original image
def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    # Get Center Point
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    # Calculate width and height
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)

# Parsing xml files
def convert_annotation(image_id):
    in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' % image_id,'rb')
    out_file = open('VOCdevkit/VOC2007/YOLOLabels/%s.txt' % image_id, 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    in_file.close()
    out_file.close()


wd = os.getcwd()
wd = os.getcwd()
data_base_dir = os.path.join(wd, "VOCdevkit/")
if not os.path.isdir(data_base_dir):
    os.mkdir(data_base_dir)
work_sapce_dir = os.path.join(data_base_dir, "VOC2007/")
if not os.path.isdir(work_sapce_dir):
    os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
    os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
    os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
if not os.path.isdir(yolo_labels_dir):
    os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov5_images_dir = os.path.join(data_base_dir, "images/")
if not os.path.isdir(yolov5_images_dir):
    os.mkdir(yolov5_images_dir)
clear_hidden_files(yolov5_images_dir)
yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
if not os.path.isdir(yolov5_labels_dir):
    os.mkdir(yolov5_labels_dir)
clear_hidden_files(yolov5_labels_dir)
yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
if not os.path.isdir(yolov5_images_train_dir):
    os.mkdir(yolov5_images_train_dir)
clear_hidden_files(yolov5_images_train_dir)
yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
if not os.path.isdir(yolov5_images_test_dir):
    os.mkdir(yolov5_images_test_dir)
clear_hidden_files(yolov5_images_test_dir)
yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
if not os.path.isdir(yolov5_labels_train_dir):
    os.mkdir(yolov5_labels_train_dir)
clear_hidden_files(yolov5_labels_train_dir)
yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
if not os.path.isdir(yolov5_labels_test_dir):
    os.mkdir(yolov5_labels_test_dir)
clear_hidden_files(yolov5_labels_test_dir)

train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'w')
train_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'a')
list_imgs = os.listdir(image_dir)  # list image_one files
prob = random.randint(1, 100)
print("Probability: %d" % prob)
for i in range(0, len(list_imgs)):
    path = os.path.join(image_dir, list_imgs[i])
    if os.path.isfile(path):
        image_path = image_dir + list_imgs[i]
        voc_path = list_imgs[i]
        (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
        (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
        annotation_name = nameWithoutExtention + '.xml'
        annotation_path = os.path.join(annotation_dir, annotation_name)
        label_name = nameWithoutExtention + '.txt'
        label_path = os.path.join(yolo_labels_dir, label_name)
    prob = random.randint(1, 100)
    print("Probability: %d" % prob)
    if (prob < TRAIN_RATIO):  # train dataset
        if os.path.exists(annotation_path):
            train_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention)  # convert label
            copyfile(image_path, yolov5_images_train_dir + voc_path)
            copyfile(label_path, yolov5_labels_train_dir + label_name)
    else:  # test dataset
        if os.path.exists(annotation_path):
            test_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention)  # convert label
            copyfile(image_path, yolov5_images_test_dir + voc_path)
            copyfile(label_path, yolov5_labels_test_dir + label_name)
train_file.close()
test_file.close()
  • 根据自己的需求设置训练比

 运行转换代码

 转换完成

  • 转换完成后会在VOCdevkit文件夹下生成images文件夹labels文件夹,每个文件夹都会根据所设置的训练比生成trian文件夹val文件夹
  • imges文件夹下会储存图片

  •  labels文件夹下会储存所需的txt文件

 后续

  • 若需要使用YOLO模型进行训练,则可直接复制images文件夹labels文件夹
  • 若只需要使用txt文件,则可复制labels->trainlabels->val中的全部txt文件

 

 

内容概要:本文档介绍了Intel oneAPI工具集及其行业倡议,旨在提供跨架构编程解决方案,支持加速计算并打破专有锁定。oneAPI允许开发者选择最佳硬件加速技术,实现跨CPU、GPU、FPGA及其他加速的性能优化。它兼容多种编程语言和模型(如C++、Python、SYCL、OpenMP等),并通过开放标准确保未来兼容性和代码重用。文档详细描述了oneAPI工具包的功能,包括渲染、高性能计算(HPC)、物联网(IoT)、AI分析等领域的应用。此外,还介绍了DPC++(数据并行C++)编程语言及其在不同硬件架构上的执行方式,以及Intel提供的各种优化库和分析工具,如Intel MKL、IPP、VTune Profiler等。最后,通过实际案例展示了oneAPI在医疗成像和超声产品中的成功应用。 适合人群:软件开发人员、硬件工程师、系统架构师、OEM/ODM厂商、ISV合作伙伴,特别是那些需要在多种硬件平台上进行高效编程和性能优化的专业人士。 使用场景及目标:①为跨架构编程提供统一的编程模型,简化多硬件平台的应用开发;②利用开放标准和工具集,提高代码可移植性和重用性;③通过优化编译和技术库,提升应用程序的性能表现;④借助分析和调试工具,快速识别并解决性能瓶颈。 其他说明:Intel oneAPI工具集不仅支持现有编程语言和模型,还提供了强大的中间件和框架支持,适用于多样化的应用负载需求。开发者可以通过Intel DevCloud获取实际操作经验,同时利用DPC++兼容性工具将现有CUDA代码迁移到SYCL环境。此外,文档还提供了详细的性能优化指南和未来产品路线图,帮助用户更好地规划技术演进路径。
“班级网站设计代码”项目是网页设计初学者及有一定基础的设计师的理想学习资源。它提供了完整的源代码,涵盖构建可运行班级网站所需的所有文件。网页设计包含前端开发、后端开发和用户体验设计等多个方面,而这个项目能帮助你深入理解这些技术的实际应用。 首先,HTML是网页的基础,它通过标签定义网页的结构,如标题、段落、图片和链接等。在这个项目中,你可以清晰地看到如何利用HTML搭建网页的框架。其次,CSS用于控制网页的样式和布局,赋予网页视觉美感。通过设置颜色、字体、布局以及响应式设计,CSS确保网站能在不同设备上良好显示。项目中的源代码展示了如何运用CSS实现多样化的样式效果。 JavaScript则是实现网页动态功能的关键,它能够处理用户交互、数据操作和动画效果。在这个班级网站中,JavaScript代码可能用于实现按钮点击事件、表单验证或页面动态更新等功能。此外,响应式设计是现代网页设计的重要组成部分。借助媒体查询和流式布局,该班级网站能够自动适应手机、平板和桌面电脑等不同设备的屏幕尺寸。 为了提高开发效率,现代网页设计常常会引入前端框架和库,如Bootstrap或Vue.js。这些工具提供了一套预设的样式和组件,简化了网页的构建过程。虽然具体是否使用了这些框架需要查看源代码,但了解它们的工作原理对于提升网页设计能力至关重要。 如果班级网站包含用户登录、留言等功能,那么后端技术(如PHP、Node.js或Python)和数据库(如MySQL或MongoDB)也会被涉及。这部分代码主要负责处理数据的提交、验证和存储,以及与服务的通信。 用户体验(UX)和界面设计也是网页设计的重要方面。一个优秀的网站不仅要有美观的外观,还要具备良好的易用性。通过观察和分析这个班级网站的布局和交互设计,你可以学习如何提升用户体验,例如如何设计清晰的导航、易读的信息和直观的操作流程。 通过深入研究“
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值