土狼算法(Wolf Search Algorithm)是一种基于群体智能的优化算法,灵感源自于狼群的捕食行为。在土狼算法中,狼群以一种协作的方式搜索最优解,从而解决了许多实际问题。本文将介绍土狼算法的原理和实现过程,并提供MATLAB源代码作为示例。
算法原理:
- 初始化:确定问题的适应度函数,设置狼群数量和位置,以及其他算法参数。
- 狼群协作:对于每一代,根据适应度函数评估每只狼的适应度,并依此更新狼群的位置。
- 狼群迁移:通过随机选择一个狼,将其位置迁移到其他狼的附近位置,以增加搜索的多样性。
- 领导者选择:根据适应度函数选择狼群中的