2018-4-17论文《狼群算法的研究与应用》笔记1 智能算法简介;狼群算法国内外研究现状以及参看文献

本篇文章的内容来自阅读《狼群算法的研究与应用》的原文

摘自原文中的:

1.2智能算法简介  

(1)Hackwood 和Beni1992年提出群智能的概念,指出“所谓群体指的是一组仙湖之间可以进行直接或间接通信,协作进行分布式问题求解的主体”

(2)群智能指“不具备智能行为的主体通过相互协作表现出智能行为的特征”

(3)

20 世纪 60 年代,
Michigan 大学的 Holland 教授和他的学生、同事共同提出的遗传算法[15](Genetic  Algorithm,  GA)为最早的仿生智能算法。该算法模拟自然界生物自然选择和遗传机理,通过个体间的选择、交叉、变异等操作求解最优化问题。随后科研人员陆续提出了进化规划[16](Evolutionary Programming, EP)、演化策略[17](Evolution Strategies, ES)、遗传规划[18](Genetic Programming, GP)等相似算法。

例如:在现代神经科学研究基础上,通过模拟大脑神经网络处理、记忆信息等特点,Zeidenberg 提出了人工神经网络算法

[19](Artificial Neural Network, ANN);通过模拟蚂蚁分工与协作的特点,Dorigo 等提出了蚁群算法[20](ant colony optimization, ACO);通过模拟人类文化进化过程,Reynolds等提出了文化算法[21](Cutural Alogrithm, CA);通过观察鸟群捕食行为,Kennedy 等提出了粒子群优化算法[22](Particle   Swarm Optimization, PSO);在求解 Chebyshev 多项式拟合问题时,Storn 等提出了基于群体差异性的差分进化算法[23](Differential Evolution,  DE);利用 DNA 双螺旋结构和碱基互补配对的特点,将运算对象映射为DNA 分子链求解问题的 DNA 计算[24]方法;通过活细胞中以及组织、器官之间的协作关系衍生来的膜计算方法[25](Membrane Computing, MC,  也称为 P 系统);通过模拟大肠杆菌在食道内的觅食行为,Passino 等提出了细菌觅食优化算法[26](Bactering Foraging Optimization Alogirithm, BFOA);通过模拟鱼群捕食中的聚群、追尾行为,李晓磊等提出了人工鱼群算法[27](Artificial Fish-swarm Algorithm, AFSA);通过模仿青蛙觅食中群体信息的交流与共享的特点,Eusuff 等提出了人工混合蛙跳算法[28](Shuffled Frog Leaping Algorithm, SFLA);通过模拟人口随经济重心而转移、随人口压力增加而扩散机理,周勇华等提出了人工迁移算法[29](Population  Migration Algorithm,  PMA);仿真蜜蜂群体组织、繁殖及觅食行为的特点,Karaboga 等提出了人工蜂群算法[30](Artificial Bee Colony Algorithm, ABC);通过模拟萤火虫发光的特性,

Krishnanand 等提出了萤火虫算法[31](Glowworm Swarm Optimization, GSO);通过模拟布谷鸟的寄生育雏、微蝙蝠回声定位并采用不同的脉冲发射率和响度,Yang 等分别提出了布谷鸟搜索算法[32](Cuckoo  Search,  CS,也称作杜鹃搜索算法)和蝙蝠算法[33](Bat Algorithm,  BA);


1.3狼群算法的国内外研究现状

在算法研究方面,文献[41]在 WCA 算法中加入领导者策略,提出基于领导者策略的狼群算法(Leader Wolf Colony Algorithm,LWCA),使得算法一直由领导者领导,搜寻问题全局最优解,实验表明,在领导者带领下,算法寻优更精确,收敛速度更快。文献[42]将 WPA 算法融入文化算法的框架下,提出文化狼群优化算法(Cultural  Wolf Pack Algorithm, CWPA),算法将狼群置于种群空间,信仰空间依据头狼所在位置进行建立,实验表明算法收敛速度与寻优精度均得到加强。文献[43]在 WPA 的基础上增加随机生存更新规则,以保持算法的多样性,实验表明该算法收敛速度与收敛精度均得到加强,并将算法应用求解 PID 问题。文献[44]在 WSA 算法的基础上,融入非线性单纯形法(Nelder-Mead, NM),增强 WSA 算法的局部搜索能力,实表明该方法获得了较好的求解精度。文献[45]提出 CWCA 算法,该算法由头狼利用映射、扩展和收缩产生新的点,并由此点代替坏点,不断向最优点靠近,并成功应用于 UCAV 路径规划问题,取得较好的优化效果。 在算法应用方面,文献[46]将 WCA 算法应用于智能电网高精度时间同步控制中,并取得较好的效果。文献[47]成功将 WPA 算法应用于糖尿病外周血管阻塞的估计,并取得一定效果。文献[48]将 DE 算法与 WPA 算法融合,并应用于卫星导航欺骗干扰识别,实验结果表明算法具有更高的识别精度。文献[49]提出等级划分狼群算法(Hierarchic Wolf Algorithm, HWA),采用双重编码方式,克服 WCA 算法只能求解连续优化的弊端,将 HWA 算法应用于三维传感器优化布置中取得了较好的效果。文献[50]将敌方火力威胁和环境障碍处理成地图峰值点,建立 UVA 航迹模型,并用 WPA 应用求解 UVA 问题,实验表明了 WPA 比 PSO 更精确。文献[51]将 WPA 算法应用优化BP 神经网络算法的初始权值和阈值,使得算法收敛速度与精度得到提升。文献[52]将 LWCA 算法应用在光伏阵列 MPPT 中,有效进行全局最大功率点的跟踪,验证了算法的可行性。文献[53]改进 LWCA 算法的步长因子,提出 IWPS 算法,并应用在水电站水库优化调度中,实验表明狼群算法是求解该类问题的一种有效方法。文献[54]利用狼群算法处理神经网络学习训练后的权值矩阵,实验表明,具有狼群优化的自组织神经网络频谱感知算法具有更好的频谱感知能力。文献[55]在 WCA 算法中引入分组策略,提出分布式狼群算法(Distributed wolf  algorithm, DWA),并成功解决三维传感器优化布置问题。 在算法离散化理论研究方面,文献[56]提出离散狼群算法(Discrete  Wolf  Pack Algorithm, DWPA),该算法采用遗传算法实现编码,并对多选择背包问题进行求解,表明 DWPA 算法是求解组合优化问题的新方法。文献[57]提出二进制狼群算法(Binary Wolf Pack Algorithm,  BWPA),该算法引入运动算子,对狼群搜索行为进行二进制编码,并对 10 个经典的 0-1 背包问题进行仿真实验,表明算法具有更高的稳定性和全局寻优能力。文献[58]提出了改进二进制狼群算法(Improve  Binary  Wolf  Pack Algorithm, IB-WPA),该算法设计了试探装载式的修复机制,并对 19 组不同规模的多位背包问题进行求解,证明了算法的有效性和稳定性。文献[59]也提出一种 DWPA 算法,该算法通过定义反转算法,对狼群重新编码,并对多组 TSP 问题进行实验,验

证算法具有较高的精确性、稳定性等优势。






评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值