有相同元素值时的快速排序——对经典快速排序划分过程的改进

有相同元素值时的快速排序——对经典快速排序划分过程的改进

最近做数据结构的课程设计,遇到了这样一道题:用尽可能高的效率分解三种不同数据 如:132123212 --> 11222233 不难看出这道题很像快速排序(quick sort)中对中间数值 2 进行一次划分(partition)过后的结果。但是传统快速排序的划分过程并不会对与基准相同的数值进行操作,与基准相同的值会分布在左右区间中。所以对经典快速排序中的划分过程进行修改,使其变成小于、等于、大于三部分

基本思想
传统划分:i之前为小于等于,i之后为大于等于。我们要形成三部分,便是i之前小于等于,i~t等于基准,t之后大于基准。我的思路为将小于与等于统一操作,放在t之前。每次放入新元素时,判断是否等于。如果等于直接放在t处。如果小于,在判断是否有已经相等的元素在t之前,如果有则与之交换,使得相等部分保持在i-t之间。

代码:

int d[9]={3,3,2,1,2,3,2,1,2},maxsize=9,i,tmp;
   int small,big;
   small=d[0];big=d[0]; 
   for(i=1;i<maxsize;i++)  //找到最大值与最小值
   {
      if(d[i]>big) big=d[i];
      if(d[i]<small) small=d[i];
   }
   if(d[0]==small || d[0]==big)  
   for(i=1;i<=maxsize;i++) 
   if(d[i]!=small&&d[i]!=big) {tmp=d[i]; d[i]=d[0];d[0]=tmp;break;} //将中值交换到第一位
   
   int key=d[0];	//以下为改进后的partition   key为基准
	int j,t; // i之前为小于基准 i~t为等于基准 t之后为大于基准 将partition分为三部分
	i=0;t=0;j=maxsize-1;
	while(t<j)//从两端交替向中间扫描,直至t=j为止
	{
		while(t<j&&d[j]>key)   //从右向左扫描,找一个小于key的b[i]
		{
			j--;
		}
      d[t]=d[j];
		if(t<j){
			if(d[t]<key)     //如果交换过来的数字小于key
			{
				if(i<t)     //说明存在等于基准的数字  将其交换到最后一位
				{    
					tmp=d[i];
					d[i]=d[t];
					d[t]=tmp;
				}
				i++;
			}
		t++;}
		while(t<j&&d[t]<=key)  //从左向右扫描,找一个大于key的b[i]
		{
         if(d[t]<key) //如果小于key 进行交换
         {
            tmp=d[i];
            d[i]=d[t];
            d[t]=tmp;
            i++;
         } 
         t++;
		}
		d[j]=d[t];
	}  
	d[t]=key;
   for(i=0;i<maxsize;i++) cout<<d[i]<<" ";
}
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页