MobaXterm使用与Anaconda环境配置
MobaXterm使用
官网提供 MobaXterm 的免费开源版 “Home Edition” 下载, 免费开源版又分绿色免安装版(解压即用)和安装版(需要一步步安装)。MobaXterm 免费版(personal)和专业版(Professional)除了 sessions 数、SSH tunnels 数和其他一些定制化配置外限制外,免费版在终端底部还多了一个 “UNREGISTERED VERSION” 提示。
安装
简单的一直下一步即可。
创建SSH session
双击创建好的session即可。
文件的下载与上传
上传直接拖入即可,下载右键->Download
右键快捷粘贴
鼠标左键划选复制文件,右键粘贴文本。但在Moba中右键粘贴功能默认不打开,我们可以手动打开。
在菜单栏点击 「settings」 –> 「Configuration」,在弹出的对话框中选择 「terminal」,再将 「paste using right-click」 打上对勾即可。
服务器安装Anaconda
下载
在Anaconda官网下载Linux安装包
这里以最新版Anaconda为例:Anaconda3-2024.06-1-Linux-x86_64.sh
安装
- 下载好后将Anaconda3-2024.06-1-Linux-x86_64.sh文件上传至服务器
- cd至sh文件的目录
- 在终端输入
bash Anaconda3-2021.05-Linux-x86_64.sh
如果没有权限,可以用chmod +x 给sh文件赋权
按回车,别搞成输入ENTER了。
一直按回车,直到出现:
输入yes,回车
继续回车
输入yes添加环境变量。
安装完成后重启终端,进入自己的目录,
输入
conda -V
显示
(pytorch) chenjh@sz_jszx_ai02_12_161:~/RIFE_NEW$ conda -V
conda 4.10.1
如果此时提示conda 不是系统命令
使用vim ~/.bashrc
进入编辑环境变量
# some more ls aliases
alias ll='ls -alF'
alias la='ls -A'
alias l='ls -CF'
# default file mode 0666
umask 0000
PS1="\w> "
# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
__conda_setup="$('/home/user/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
eval "$__conda_setup"
else
if [-f "/home/user/anaconda3/etc/profile.d/conda.sh"]; then
. "/home/user/anaconda3/etc/profile.d/conda.sh"
else
export PATH="/home/user/anaconda3/bin:$PATH"
fi
fi
unset __conda_setup
# <<< conda initialize <<<
export PATH=$PATH:/home/user/anaconda3/bin
注意:这里的 /home/user/只是指代通常存放地址,要根据你的conda安装路径修改!
Pytorch安装
查看cuda版本
nvcc -V
用nvidia-smi查到的不准
如果nvcc提示不是系统命令,则需要安装一下nvcc,或者检查
~/.bashrc
加入cuda信息(先去系统/usr/local/目录下查看安装过的cuda版本,如果没有安装cuda需要安装cuda才行。)
export PATH="/usr/local/cuda-11.8/bin:$PATH"`
export LD_LIBRARY_PATH="/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH"
下载对应cuda版本的torch
接着以cuda 11.8为例:
打开torch官网:
这里以下载torch 2.4为例:
复制这行代码在终端输入即可。
在本地浏览器查看远程服务器的tensorboard
第一步:设置MobaXterm SSH tunnel
第二步:运行tensorboard
服务器输入如下指令 假如your_server_ip=100.1.1.1
tensorboard --logdir=/your_log_dir/ --host=your_server_ip
会返回
TensorBoard 2.12.0 at http://100.1.1.1:6006/ (Press CTRL+C to quit)
复制http://100.1.1.1:6006/在本地打开即可在本地查看到远程服务器上的tensorboard的内容了。