MobaXterm使用及环境配置(Anaconda下载及虚拟环境创建)

1、基础命令
(1) 激活环境   conda activate + 环境名(如pytorch)
(2) 退出环境   conda deactivate  
(3) 显示服务器可用内存   nvidia-smi  (查看cuda版本)(!注意 无空格)
(4) 查看安装的虚拟环境   conda info --envs 
(6) 卸载环境   conda remove -n 环境名 --all  

2、环境安装配置过程
2.1 先安装Anaconda(其中包含了python)   ,然后再创建pytorch虚拟环境

Linux版本下载链接:Index of /

在命令行中输入:
wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh       #下压缩包
bash Anaconda3-2022.10-Linux-x86_64.sh       #解压缩

环境配置选yes

然后输入source ~/.bashrc #重启环境变量(自动配置环境的话则不需要前两步骤)

# 第一步
vim ~/.bashrc
# 第二步
export PATH=/home/XXX/anaconda3/bin:$PATH	# XXX是你的用户名
# 第三步
source ~/.bashrc	#重启环境变量

conda      #验证Anaconda是否已成功安装

可以用 conda -V 查看anaconda版本,用python -V查看python版本(V是大写)

若conda显示不存在,重新登陆或者刷新环境;再不行修改环境变量,看路径是否有错
问题解决导向:MobaXterm连接服务器及Anaconda的安装_xobaxterm上打开火狐-CSDN博客    

更换清华源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

附加第三方的conda源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/ 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/ 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/ 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

2.2 创建虚拟环境pytorch
(1) 创建一个虚拟环境 
    conda create -n pytorch(环境名) python=3.9(对应python版本)
(2) 激活环境
    conda activate 环境名
(3) 安装

在pyorch官网(PyTorch)中查看和电脑cuda版本相匹配的torch版本,我的cuda是11.1(切记在官网的命令上去除:-c pytorch,因为 -c pytorch这一指令指向了conda官方的Pytorch下载库通道,会非常慢,而且极其容易下载失败,去掉后会到我们之前配置的channel中寻找)(pip命令好像会比conda下载快一点)

pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html


(4)检查是否安装成功
进python环境:python
输入代码:import torch

# 创建一个张量(Tensor)
x = torch.tensor([[1, 2, 3], [4, 5, 6]])

# 打印张量的形状和数值
print("Tensor shape:", x.shape)
print("Tensor values:", x)

参考链接:配置MobaXterm环境_mobaxterm创建环境-CSDN博客

使用MobaXterm连接服务器并利用Anaconda进行安装pytoch框架跑深度学习模型(使用学校服务器+显卡进行深度学习)_mobaxerm跑代码-CSDN博客

Linux常用命令大全:Linux常用命令大全,满满干货(一)-CSDN博客

Linux:退出vim编辑模式_linux怎么退出vim编辑模式-CSDN博客

Solving environment: failed with initial frozen solve. Retrying with flexible solve._solving environment: unsuccessful initial attempt -CSDN博客

                         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值