python面向对象编程

符合python风格的对象

先来看一个向量类的例子

class Vector2d:
    typecode = 'd'
    
    """使用两个或者一个前导下划线,把属性标记为私有的"""
    def __init__(self, x, y):
        self.__x = float(x)
        self.__y = float(y)
        
    """@property 装饰器把读值方法标记为特性"""
    @property
    def x(self):
        return self.__x
        
    @property
    def y(self):
        return self.__y
        
    """定义__iter__ 方法,把Vector2d实例变成可迭代的对象,这样才能拆包(例如,x, y = my_vector)"""
    def __iter__(self):
        return (i for i in (self.x, self.y))
        
    """repr 函数调用Vector2d 实例,得到的结果类似于构建实例的源码"""
    def __repr__(self):
        class_name = type(self).__name__
        return '{}({!r}, {!r})'.format(class_name, *self)
        
    """print 函数会调用str 函数,对Vector2d 来说,输出的是一个有序对"""
    def __str__(self):
        return str(tuple(self))
        
    """bytes 函数会调用__bytes__ 方法,生成实例的二进制表示形式"""
    def __bytes__(self):
        return (bytes([ord(self.typecode)]) + bytes(array(self.typecode, self)))
        
    """Vector2d 实例支持使用== 比较;这样便于测试"""
    def __eq__(self, other):
        return tuple(self) == tuple(other)
        
    """定义hash, 让实例成为可散列对象"""
    def __hash__(self):
        return hash(self.x) ^ hash(self.y)
    
    """abs 函数会调用__abs__ 方法,返回Vector2d 实例的模"""
    def __abs__(self):
        return math.hypot(self.x, self.y)
        
    """bool 函数会调用__bool__ 方法,如果Vector2d 实例的模为零,返回False,否则返回True"""
    def __bool__(self):
        return bool(abs(self))
        
    def angle(self):
        return math.atan2(self.y, self.x)
        
    """内置的format() 函数和str.format() 方法把各个类型的格式化方式委托给相应的
.__format__(format_spec) 方法"""
    def __format__(self, fmt_spec=''):
        if fmt_spec.endswith('p'):
            fmt_spec = fmt_spec[:-1]
            coords = (abs(self), self.angle())
            outer_fmt = '<{}, {}>'
        else:
            coords = self
            outer_fmt = '({}, {})'
        components = (format(c, fmt_spec) for c in coords)
        return outer_fmt.format(*components)
        
        """类方法使用classmethod 装饰器修饰,不用传入self 参数;相反,要通过cls 传入类本身 """
        @classmethod
        def frombytes(cls, octets):
            typecode = chr(octets[0])
    memv = memoryview(octets[1:]).cast(typecode)
    return cls(*memv)
classmethod与staticmethod
  • classmethod: 类方法定义操作类,而不是操作实例的方法,第一个参数是类本身
  • staticmethod: staticmethod装饰器也会改变方法的调用方式,但是第一个参数不是特殊的值。其实,静态方法就是普通的函数,只是碰巧在类的定义体中,而不是在模块层定义
覆盖类属性
  • python有个很独特的特性:类属性可用于为实例属性提供默认值
  • 假如我们为类实例属性复制,那么同名类属性不受影响

序列的修改、散列和切片

协议和鸭子类型

在面向对象编程中,协议是非正式的接口,只在文档中定义,在代码中不定义。例如,Python 的序列协议只需要__len__ 和__getitem__ 两个方法。任何类,只要使用标准的签名和语义实现了这两个方法,就能用在任何期待序列的地方。

import collections
Card = collections.namedtuple('Card', ['rank', 'suit'])

class FrenchDeck:
    ranks = [str(n) for n in range(2, 11)] + list('JQKA')
    suits = 'spades diamonds clubs hearts'.split()
    
    def __init__(self):
        self._cards = [Card(rank, suit) for suit in self.suits
                       for rank in self.ranks]
                       
    def __len__(self):
        return len(self._cards)
        
    def __getitem__(self, position):
        return self._cards[position]
切片原理

用一个例子来看看切片的原理

>>> class MySeq:
... def __getitem__(self, index):
...     return index 
...
>>> s = MySeq()
>>> s[1] 
1
>>> s[1:4] 
slice(1, 4, None)
>>> s[1:4:2] # 从1开始,到4结束,步幅为2
slice(1, 4, 2)
>>> s[1:4:2, 9] # 如果[]中有逗号,__getitem__收到的是元组
(slice(1, 4, 2), 9)
>>> s[1:4:2, 7:9] # 返回多个切片对象
(slice(1, 4, 2), slice(7, 9, None))
>>> dir(slice) # 查看slice类的属性
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__gt__',
'__hash__', '__init__', '__le__', '__lt__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__',
'indices', 'start', 'step', 'stop']
>>> slice(None, 10, 2).indices(5) 
(0, 5, 2)
>>> slice(-3, None, None).indices(5) 
(2, 5, 1)
>>> help(slice.indices) # 查看slice.indices方法的信息
可切片的序列

来看看,可切片的Vector类如何实现, Vector实例的切片仍然是Vector实例

from array import array
import math
import operator

class Vector:
    typecode = 'd'
    def __init__(self, components):
        # self._components 是“受保护的”实例属性,把Vector 的分量保存在一个数组中
        self._components = array(self.typecode, components) 
    
    # 支持序列属性
    def __len__(self):
        return len(self._compoents)
        
    def __getitem__(self, index):
        # 获取实例所属的类
        cls = type(self) 
        # 如果参数使slice对象
        if isinstance(index, slice): 
            return cls(self._components[index]) 
        # 如果index是整数类型
        elif isinstance(index, numbers.Integral): 
            return self._components[index] 
        # 否则抛出异常
        else:
            msg = '{cls.__name__} indices must be integers'
            raise TypeError(msg.format(cls=cls))
        
    def __iter__(self):
        return iter(self._components) 
    
    # 将Vector实例变成可散列的对象
    def __hash__(self):
        hashs = map(hash, self._compoents)
        return functools.reduce(operator.xor, hashes)

    def __eq__(self, other):
        # 对于有几千个分量来说,效率十分低下
        # return tuple(self) == tuple(other)
        if len(self) != len(other): 
            return False
            for a, b in zip(self, other): 
            if a != b: 
            return False
        return True 
        
    def __repr__(self):
        components = reprlib.repr(self._components) 
        components = components[components.find('['):-1] 
        return 'Vector({})'.format(components)
        
    def __str__(self):
        return str(tuple(self))
        
    def __bytes__(self):
        return (bytes([ord(self.typecode)]) + bytes(self._components)) 
        
    def __abs__(self):
        return math.sqrt(sum(x * x for x in self)) 
        
    def __bool__(self):
        return bool(abs(self))
        
    @classmethod
    def frombytes(cls, octets):
        typecode = chr(octets[0])
        memv = memoryview(octets[1:]).cast(typecode)
        return cls(memv) 
        
# 单个整数索引只获取分量,值为浮点数
>>> v7 = Vector(range(7))
>>> v7[-1] 
6.0
# 切片索引返回一个新Vector实例
>>> v7[1:4] 
Vector([1.0, 2.0, 3.0])
>>> v7[-1:] 
Vector([6.0])
>>> v7[1,2] 
Traceback (most recent call last):
...
TypeError: Vector indices must be integers
动态属性存取*

使用@property 装饰器可以把x 和y 标记为只读特性)。我们可以在Vector 中编写这样的特性,但这样太麻烦。特殊方法__getattr__ 提供了更好的方式。属性查找失败后,解释器会调用__getattr__方法。
简单来说,对my_obj.x 表达式,Python会检查my_obj实例有没有名为x的属性;如果没有,到类(my_obj.__class__)中查找;如果还没有,顺着继承树继续查找。如果依旧找不到,调用my_obj所属类中定义的__getattr__方法,传入self 和属性名称的字符串形式

shortcut_names = 'xyzt'
def __getattr__(self, name):
    # 获取Vector类
    cls = type(self) 
        # 如果只有一个字母,找到所在的位置
        if len(name) == 1: 
            pos = cls.shortcut_names.find(name) 
            if 0 <= pos < len(self._components):
                # 返回对应位置的元素
                return self._components[pos]
    msg = '{.__name__!r} object has no attribute
    raise AttributeError(msg.format(cls, name))
    
>>> v = Vector(range(5))
>>> v
Vector([0.0, 1.0, 2.0, 3.0, 4.0])
# 获取第一个元素
>>> v.x 
0.0
# 为v.x赋值,这个操作应该抛出异常
>>> v.x = 10 
>>> v.x #
10
# 向量的分量没变
>>> v
Vector([0.0, 1.0, 2.0, 3.0, 4.0])

示例之所以前后矛盾,是__getattr__的运作方式导致的:仅当对象没有指定名称的属性时,Python 才会调用那个方法,这是一种后备机制
可是,像v.x = 10 这样赋值之后,v 对象有x 属性了,因此使用v.x 获取x 属性的值时不会调用_getattr_ 方法了,解释器直接返回绑定到v.x 上的值,即10。另一方面,_getattr_ 方法的实现没有考虑到self._components 之外的实例属性,而是从这个属性中获取shortcut_names 中所列的“虚拟属性”。
我们改写Vector类中的属性设置逻辑,如果为单个小写字母属性赋值,我们想抛出异常,实现__setattr__方法

def __setattr__(self, name, value):
    cls = type(self)
    if len(name) == 1: 
        # 如果name是xyzt中的一个,设置错误消息
        if name in cls.shortcut_names: 
            error = 'readonly attribute {attr_name!r}'
        elif name.islower(): 
            error = "can't set attributes 'a' to 'z' in {cls_name!r}"
        else:
            error = '' 
        if error: 
            msg = error.format(cls_name=cls.__name__, attr_name=name)
            raise AttributeError(msg)
    # 默认情况下,在超类上调用__setattr__方法,提供标准行为
    super().__setattr__(name, value)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值