#4486. 「CEOI2019」游乐园

本文详细解析CEOI2019 Day2 T1题目,介绍了一种通过状态压缩动态规划和容斥原理解决有向图转化为DAG问题的方法,给出了解题思路和具体实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

译自 CEOI 2019 Day2 T1「Amusement Park

你有一个 n n n 个节点的有向图,我们称一个合法的方案是将其中一些边的方向翻转之后使得剩下的图无环。请对于所有合法的方案,将方案中翻转方向的边的数量求和。

答案对 998244353 998244353 998244353 取模。

题解

考虑到如果我们翻转 x x x 条边使得原图变成 DAG \text{DAG} DAG 的话,那我们可以翻转另外 m − x m-x mx 条边使得变成方向相反的 DAG \text{DAG} DAG ,所以我们可以将问题转化成给一张无向图,给边定向,问 DAG \text{DAG} DAG 的方案数,最后再乘上 m 2 \frac{m}{2} 2m 即可。

于是我们考虑状压 dp \text{dp} dp f [ s ] f[s] f[s] 表示点集 s s s 构成 DAG \text{DAG} DAG 的方案数,转移的话就考虑加入点集 s ′ s' s 使得 s s s s ′ s' s 没有交集并且 s ′ s' s 间没有连边,那 s s s s ′ s' s 的边就全部定向了。但是这样显然会算重,考虑容斥,容斥系数为 ( − 1 ) ( ∣ s ′ ∣ + 1 ) (-1)^{(|s'|+1)} (1)(s+1)

所以我们枚举子集即可,效率: O ( 3 n + 2 n m ) O(3^n+2^nm) O(3n+2nm)

代码
#include <bits/stdc++.h>
using namespace std;
const int N=1<<18,P=998244353;
int n,m,A,f[N],U[N],V[N],a[N],d[N];
int main(){
	cin>>n>>m;a[0]=P-1;A=(1<<n);f[0]=1;
	for (int i=1;i<A;i++) a[i]=P-a[i&(i-1)];
	for (int i=1;i<=m;i++)
		scanf("%d%d",&U[i],&V[i]),U[i]--,V[i]--;
	for (int i=0;i<A;i++)
		for (int j=1;j<=m;j++)
			if ((i&(1<<U[j])) && (i&(1<<V[j])))
				{d[i]=1;break;}
	for (int i=1;i<A;i++)
		for (int j=i;j;j=(j-1)&i)
			if (!d[j]) (f[i]+=1ll*f[i^j]*a[j]%P)%=P;
	cout<<1ll*((P+1)>>1)*m%P*f[A-1]%P<<endl;return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值