#4736. Tritwise Mex

题目描述

给出两个长度为 3 k 3^k 3k 的数组 a , b a,b a,b ,求数组 c c c c [ i ] = ∑ m e x 3 ( j , k ) = i a j b k c[i]=\sum_{mex_3(j,k)=i}a_jb_k c[i]=mex3(j,k)=iajbk ,其中 m e x 3 ( i , j ) mex_3(i,j) mex3(i,j) 表示将 i , j i,j i,j 化成 3 3 3 进制数,每一位都取 m e x mex mex 后的值。

题解

其实想法挺自然的考场上不知道在干啥。

考虑求出 c [ 0 × 3 x + i ] , c [ 1 × 3 x + i ] , c [ 2 × 3 x + i ] c[0 \times 3^x+i],c[1 \times 3^x+i],c[2 \times 3^x+i] c[0×3x+i],c[1×3x+i],c[2×3x+i] 的值

c [ 0 × 3 x + i ] = ∑ m e x 3 ( j , k ) = i ( a [ 1 × 3 x + j ] + a [ 2 × 3 x + j ] ) ( b [ 1 × 3 x + k ] + b [ 2 × 3 x + k ] ) c[0 \times 3^x+i]=\sum_{mex3(j,k)=i}(a[1 \times 3^x+j]+a[2 \times 3^x+j])(b[1 \times 3^x+k]+b[2 \times 3^x+k]) c[0×3x+i]=mex3(j,k)=i(a[1×3x+j]+a[2×3x+j])(b[1×3x+k]+b[2×3x+k])
c [ 1 × 3 x + i ] = ∑ m e x 3 ( j , k ) = i ( a [ 0 × 3 x + j ] + a [ 2 × 3 x + j ] ) ( b [ 0 × 3 x + k ] + b [ 2 × 3 x + k ] ) c[1 \times 3^x+i]=\sum_{mex3(j,k)=i}(a[0 \times 3^x+j]+a[2 \times 3^x+j])(b[0 \times 3^x+k]+b[2 \times 3^x+k]) c[1×3x+i]=mex3(j,k)=i(a[0×3x+j]+a[2×3x+j])(b[0×3x+k]+b[2×3x+k]) − a [ 2 × 3 x + j ] b [ 2 × 3 x + k ] -a[2 \times 3^x+j]b[2 \times 3^x+k] a[2×3x+j]b[2×3x+k]
c [ 2 × 3 x + i ] = ∑ m e x 3 ( j , k ) = i a [ 0 × 3 x + j ] b [ 1 × 3 x + k ] + a [ 1 × 3 x + j ] b [ 0 × 3 x + k ] c[2 \times 3^x+i]=\sum_{mex3(j,k)=i}a[0 \times 3^x+j]b[1 \times 3^x+k]+a[1 \times 3^x+j]b[0 \times 3^x+k] c[2×3x+i]=mex3(j,k)=ia[0×3x+j]b[1×3x+k]+a[1×3x+j]b[0×3x+k]

所以发现我们可以把原式的操作看成一次卷积,设 A 0 ( x ) = ∑ i a [ 0 × 3 x + i ] A_0(x)=\sum_ia[0 \times 3^x+i] A0(x)=ia[0×3x+i] ,剩下的同理,则
C 0 ( x ) = ( A 1 ( x ) + A 2 ( x ) ) ( B 1 ( x ) + B 2 ( x ) ) C_0(x)=(A_1(x)+A_2(x))(B_1(x)+B_2(x)) C0(x)=(A1(x)+A2(x))(B1(x)+B2(x))
C 1 ( x ) = ( A 0 ( x ) + A 2 ( x ) ) ( B 0 ( x ) + B 2 ( x ) ) − A 2 ( x ) B 2 ( x ) C_1(x)=(A_0(x)+A_2(x))(B_0(x)+B_2(x))-A_2(x)B_2(x) C1(x)=(A0(x)+A2(x))(B0(x)+B2(x))A2(x)B2(x)
C 2 ( x ) = ( A 0 ( x ) + A 1 ( x ) + A 2 ( x ) ) ( B 0 ( x ) + B 1 ( x ) + B 2 ( x ) ) − C 0 ( x ) − C 1 ( x ) C_2(x)=(A_0(x)+A_1(x)+A_2(x))(B_0(x)+B_1(x)+B_2(x))-C_0(x)-C_1(x) C2(x)=(A0(x)+A1(x)+A2(x))(B0(x)+B1(x)+B2(x))C0(x)C1(x)

于是递归处理即可。

代码
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int N=6e5+5;int n,m;
LL a[N][15],b[N][15],c[N][15];
void solve(int k,int d){
	if (d==1){
		c[0][d]=(a[1][d]+a[2][d])*(b[1][d]+b[2][d]);
		c[1][d]=(a[0][d]+a[2][d])*(b[0][d]+b[2][d])-a[2][d]*b[2][d];
		c[2][d]=a[0][d]*b[1][d]+a[1][d]*b[0][d];
		return;
	}
	k/=3;
	for (int i=0;i<k;i++)
		a[i][d-1]=a[i+k+k][d],b[i][d-1]=b[i+k+k][d];
	solve(k,d-1);
	for (int i=0;i<k;i++) c[i+k][d]=-c[i][d-1];
	for (int i=0;i<k;i++)
		a[i][d-1]+=a[i+k][d],b[i][d-1]+=b[i+k][d];
	solve(k,d-1);
	for (int i=0;i<k;i++) c[i][d]=c[i][d-1];
	for (int i=0;i<k;i++)
		a[i][d-1]=a[i+k+k][d]+a[i][d],
		b[i][d-1]=b[i+k+k][d]+b[i][d];
	solve(k,d-1);
	for (int i=0;i<k;i++) c[i+k][d]+=c[i][d-1];
	for (int i=0;i<k;i++)
		a[i][d-1]+=a[i+k][d],b[i][d-1]+=b[i+k][d];
	solve(k,d-1);
	for (int i=0;i<k;i++)
		c[i+k+k][d]=c[i][d-1]-c[i+k][d]-c[i][d];
}
int main(){
	cin>>m;n=1;
	for (int i=0;i<m;i++) n*=3;
	for (int i=0;i<n;i++)
		scanf("%lld",&a[i][m]);
	for (int i=0;i<n;i++)
		scanf("%lld",&b[i][m]);solve(n,m);
	for (int i=0;i<n;i++) printf("%lld ",c[i][m]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值