bzoj4231 回忆树

题目描述
题解

对询问串建立 AC \text{AC} AC 自动机,考虑建出 fail \text{fail} fail 树, fail \text{fail} fail 树上节点所代表的串是这个节点子树内每个点所代表的的串的后缀。所以我们可以把链分成两条,把正反串都放入 AC \text{AC} AC 自动机中,对于一条链 ( l c a , u ) (lca,u) (lca,u) ,对于不包含 l c a lca lca 的子串,我们可以用根到 u u u 的答案减去根到包含 l c a lca lca 的子串的最上方的点的答案,那我们就可以记录一下询问串的结束节点, dfs \text{dfs} dfs 原树的时候也一起走 AC \text{AC} AC 自动机,进入的时候 + 1 +1 +1 ,回溯的时候 − 1 -1 1 ,用树状数组维护区间和即可。然后如果子串包含了 l c a lca lca 的话发现这条路径上有效的点是 2 ∣ s ∣ 2|s| 2s 的,于是拉出来做 kmp \text{kmp} kmp 即可。

代码
#include <bits/stdc++.h>
using namespace std;const int N=3e5+5;
int n,m,id[N],sz[N],dp[N],fa[19][N],hd[N],V[N];
int nx[N],tt,ne[N],a[N],su[N],tr[N][26],fi[N];
char t[N],s[N],up[N],W[N];vector<int>e[N];
struct O{int i,u,v;};vector<O>p[N];queue<int>Q;
void add(int u,int v,char c){
	nx[++tt]=hd[u];V[hd[u]=tt]=v;W[tt]=c;
}
void dfs(int u,int fr){
	dp[u]=dp[fa[0][u]=fr]+1;
	for (int i=1;fa[i-1][fa[i-1][u]];i++)
		fa[i][u]=fa[i-1][fa[i-1][u]];
	for (int v,i=hd[u];i;i=nx[i])
		if ((v=V[i])!=fr) up[v]=W[i],dfs(v,u);
}
int kmp(int n,int m){
	if (n<m) return 0;
	ne[0]=ne[1]=0;
	for (int j,i=1;i<m;i++){
		j=ne[i];
		while(j && t[j]!=t[i]) j=ne[j];
		if (t[j]==t[i]) ne[i+1]=j+1;
		else ne[i+1]=0;
	}
	int j=0,v=0;
	for (int i=0;i<n;i++){
		while(j && s[i]!=t[j]) j=ne[j];
		if (s[i]==t[j]) j++;
		if (j==m) v++;
	}
	return v;
}
int ins(int m){
	int v=0;
	for (int i=0,j;i<m;i++){
		j=t[i]-97;
		if (!tr[v][j])
			tr[v][j]=++tt;
		v=tr[v][j];
	}
	return v;
}
void build(){
	for (int i=0;i<26;i++)
		if (tr[0][i]) Q.push(tr[0][i]);
	while(!Q.empty()){
		int u=Q.front();Q.pop();
		for (int v,i=0;i<26;i++){
			v=tr[u][i];
			if (v) fi[v]=tr[fi[u]][i],Q.push(v);
			else tr[u][i]=tr[fi[u]][i];
		}
	}
	for (int i=1;i<=tt;i++) e[fi[i]].push_back(i);
}
void dfs(int u){
	id[u]=++tt;sz[u]=1;
	int z=e[u].size();
	for (int v,i=0;i<z;i++)
		v=e[u][i],dfs(v),sz[u]+=sz[v];
}
int lca(int u,int v){
	if (dp[u]<dp[v]) swap(u,v);
	for (int i=17;~i;i--)
		if (dp[fa[i][u]]>=dp[v]) u=fa[i][u];
	if (u==v) return u;
	for (int i=17;~i;i--)
		if (fa[i][u]!=fa[i][v])
			u=fa[i][u],v=fa[i][v];
	return fa[0][u];
}
void upd(int x,int v){
	x=id[x];
	for (;x<=tt;x+=x&-x) su[x]+=v;
}
int qry(int x){
	int l=id[x]-1,r=id[x]+sz[x]-1,v=0;
	for (;r;r-=r&-r) v+=su[r];
	for (;l;l-=l&-l) v-=su[l];
	return v;
}
void dfs(int u,int fr,int k){
	upd(k,1);int z=p[u].size();
	for (int i=0;i<z;i++)
		a[p[u][i].i]+=p[u][i].v*qry(p[u][i].u);
	for (int v,i=hd[u];i;i=nx[i])
		if ((v=V[i])!=fr) dfs(v,u,tr[k][W[i]-97]);
	upd(k,-1);
}
int Up(int u,int x){
	if (x<0) return u;
	for (int i=17;~i;i--)
		if (x&(1<<i)) u=fa[i][u];
	return u;
}
int main(){
	cin>>n>>m;
	for (int u,v,i=1;i<n;i++)
		scanf("%d%d%s",&u,&v,t),
		add(u,v,t[0]),add(v,u,t[0]);
	dfs(1,0);tt=0;
	for (int i=1,u,v,len,p1,p2,w,u1,u2,z;i<=m;i++){
		scanf("%d%d%s",&u,&v,t);z=lca(u,v);
		len=strlen(t);p1=ins(len);
		reverse(t,t+len);p2=ins(len);w=0;
		u1=u2=Up(u,dp[u]-dp[z]-len+1);
		for (int j=1;j<=dp[u1]-dp[z];j++)
			s[w++]=up[u2],u2=fa[0][u2];
		if (dp[u]-dp[z]>=len)
			p[u1].push_back((O){i,p2,-1}),
			p[u].push_back((O){i,p2,1});
		u1=u2=Up(v,dp[v]-dp[z]-len+1);
		w+=dp[u1]-dp[z];
		for (int j=1;j<=dp[u1]-dp[z];j++)
			s[w-j]=up[u2],u2=fa[0][u2];
		if (dp[v]-dp[z]>=len)
			p[u1].push_back((O){i,p1,-1}),
			p[v].push_back((O){i,p1,1});
		reverse(t,t+len);a[i]+=kmp(w,len);
	}
	build();tt=0;dfs(0);dfs(1,0,0);
	for (int i=1;i<=m;i++) printf("%d\n",a[i]);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值