描述×桌子上有一个m行n列的方格矩阵,将每个方格用坐标表示,行坐标从下到上依次递增,列坐标从左至右依次递增,左下角方格的坐标为(1,1),则右上角方格的坐标为(m,n)。
小明是个调皮的孩子,一天他捉来一只蚂蚁,不小心把蚂蚁的右脚弄伤了,于是蚂蚁只能向上或向右移动。小明把这只蚂蚁放在左下角的方格中,蚂蚁从
左下角的方格中移动到右上角的方格中,每步移动一个方格。蚂蚁始终在方格矩阵内移动,请计算出不同的移动路线的数目。
对于1行1列的方格矩阵,蚂蚁原地移动,移动路线数为1;对于1行2列(或2行1列)的方格矩阵,蚂蚁只需一次向右(或向上)移动,移动路线数也为1……对于一个2行3列的方格矩阵,如下图所示:
-------------------
|(2,1)|(2,2)|(2,3)|
-------------------
|(1,1)|(1,2)|(1,3)|
-------------------
蚂蚁共有3种移动路线:
路线1:(1,1) → (1,2) → (1,3) → (2,3)
路线2:(1,1) → (1,2) → (2,2) → (2,3)
路线3:(1,1) → (2,1) → (2,2) → (2,3)
 输入输入只有一行,包括两个整数m和n(0<m+n<=20),代表方格矩阵的行数和列数,m、n之间用空格隔开 输出输出只有一行,为不同的移动路线的数目。 样例输入
 样例输出
 
                
        小明是个调皮的孩子,一天他捉来一只蚂蚁,不小心把蚂蚁的右脚弄伤了,于是蚂蚁只能向上或向右移动。小明把这只蚂蚁放在左下角的方格中,蚂蚁从
左下角的方格中移动到右上角的方格中,每步移动一个方格。蚂蚁始终在方格矩阵内移动,请计算出不同的移动路线的数目。
对于1行1列的方格矩阵,蚂蚁原地移动,移动路线数为1;对于1行2列(或2行1列)的方格矩阵,蚂蚁只需一次向右(或向上)移动,移动路线数也为1……对于一个2行3列的方格矩阵,如下图所示:
-------------------
|(2,1)|(2,2)|(2,3)|
-------------------
|(1,1)|(1,2)|(1,3)|
-------------------
蚂蚁共有3种移动路线:
路线1:(1,1) → (1,2) → (1,3) → (2,3)
路线2:(1,1) → (1,2) → (2,2) → (2,3)
路线3:(1,1) → (2,1) → (2,2) → (2,3)
2 3
3
思路:这个 一眼看过去 想到 递归 , (1,1) 到 (m , n ) 的路线的 个数 ,(1,1) 的方向 只能 向右 ,和 向上 , 路线的 和 等于 (1,2)+(2,1) ,依次 下去 ,一直到 x==m , y == n , 到达 这个边界之后 返回 1,  这个是 一条 路线 。
代码:
#if 1
#include<bits/stdc++.h>
using namespace std;
 int m , n ;
 int ok(int i ,int j) 
 
 {
 	return (  i == m || j == n ) ;
 	
 }
int fun(int x, int y) 
{
	
	  
	if(ok(x,y))  
	  return 1;
 else 
	 return fun(x+1,y) +fun (x,y+1) ;
	
}
int main()
{ 
    int  a[25][25] ; 
	 cin >> m >> n ;
	 
	 cout << fun(1,1) <<endl;
	 
	 
	
}
#endif 
                  
                  
                  
                  
                            
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					807
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            