Curling 2.0 推冰球问题(dfs)

Problem Description

On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game is to lead the stone from the start to the goal with the minimum number of moves.

Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.


Fig. 1: Example of board (S: start, G: goal)

The movement of the stone obeys the following rules:

  • At the beginning, the stone stands still at the start square.
  • The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
  • When the stone stands still, you can make it moving by throwing it. You may throw it to any direction unless it is blocked immediately(Fig. 2(a)).
  • Once thrown, the stone keeps moving to the same direction until one of the following occurs:
    • The stone hits a block (Fig. 2(b), (c)).
      • The stone stops at the square next to the block it hit.
      • The block disappears.
    • The stone gets out of the board.
      • The game ends in failure.
    • The stone reaches the goal square.
      • The stone stops there and the game ends in success.
  • You cannot throw the stone more than 10 times in a game. If the stone does not reach the goal in 10 moves, the game ends in failure.


Fig. 2: Stone movements

Under the rules, we would like to know whether the stone at the start can reach the goal and, if yes, the minimum number of moves required.

With the initial configuration shown in Fig. 1, 4 moves are required to bring the stone from the start to the goal. The route is shown in Fig. 3(a). Notice when the stone reaches the goal, the board configuration has changed as in Fig. 3(b).


Fig. 3: The solution for Fig. D-1 and the final board configuration

 

Input
<p>The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets never exceeds 100.</p><p>Each dataset is formatted as follows.</p><blockquote><p><i>the width(=w) and the height(=h) of the board</i> <br><i>First row of the board</i> <br>... <br><i>h-th row of the board</i></p></blockquote><p>The width and the height of the board satisfy: 2 <= <i>w</i> <= 20, 1 <= <i>h</i> <= 20.</p><p>Each line consists of <i>w</i> decimal numbers delimited by a space. The number describes the status of the corresponding square.</p><blockquote><table id="table1"><tr><td>0 </td><td>vacant square</td></tr><tr><td>1 </td><td>block</td></tr><tr><td>2 </td><td>start position</td></tr><tr><td>3 </td><td>goal position</td></tr></table></blockquote><p>The dataset for Fig. D-1 is as follows:</p><blockquote><p>6 6 <br>1 0 0 2 1 0 <br>1 1 0 0 0 0 <br>0 0 0 0 0 3 <br>0 0 0 0 0 0 <br>1 0 0 0 0 1 <br>0 1 1 1 1 1</p></blockquote>
 

Output
<p>For each dataset, print a line having a decimal integer indicating the minimum number of moves along a route from the start to the goal. If there are no such routes, print -1 instead. Each line should not have any character other than this number.</p>
 

Sample Input
  
  
2 1 3 2 6 6 1 0 0 2 1 0 1 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 6 1 1 1 2 1 1 3 6 1 1 0 2 1 1 3 12 1 2 0 1 1 1 1 1 1 1 1 1 3 13 1 2 0 1 1 1 1 1 1 1 1 1 1 3 0 0
 

Sample Output
  
  
1 4 -1 4 10 -1
 
理解:
在推冰球的时候,冰球的前面必须有空,如果没有碰到障碍物,或者边界的话,要顺着一个方向一直走。
如果碰到障碍物了,障碍物会消失。

//推冰球问题  (记得是求最小的步数) 
#if 0                 //Curling 2.0  
#include<iostream>
#include<cstring>
using namespace std;
int m,n,mapk[25][25]={555},sx,sy,ex,ey,mmin=1000;
int f[4][2]={{-1,0},{0,1},{1,0},{0,-1}};              //上右下左  
bool ff;

int judge(int x,int y)
{
	if(x>=0&&x<m&&y>=0&&y<n)
	{
		return 1;
	}
	else
	{
		return 0;
	}
	
}

void dfs(int x,int y,int step) 
{

	
	if(step>10)
	{
		return;
	}
	
	if(x==ex&&y==ey)
	{
		if(step<mmin)
			mmin=step;
		ff=1;
		return;
	}
	else
	{
		for(int i=0; i<4; i++) 
		{
			int nextx,nexty;
			bool flag=0;
			nextx=x;
			nexty=y;
			
			if(mapk[nextx+f[i][0]][nexty+f[i][1]]==0)	//前面必须有空	
			{
				while(judge(nextx,nexty)&&flag==0)      //向前一直走 一直到边界位置 
				{
					nextx+=f[i][0];                     
					nexty+=f[i][1];
					if(nextx==ex&&nexty==ey)             
					{
						if(step+1<mmin)
							mmin=step+1;
						ff=1;
						return;
					}
					else
					if(mapk[nextx][nexty]==1)           //碰到了墙  
					{
						flag=1;
						mapk[nextx][nexty]=0;
						dfs(nextx-f[i][0],nexty-f[i][1],step+1); //后退一步进行搜索 
						mapk[nextx][nexty]=1;                 
					
					}
				}
				
			}
			
		}
	}
	
	
}


int main()
{
	while(cin>>n>>m&&n+m)
	{
		bool flag1=0;
		memset(mapk,555,sizeof(mapk));
		ff=0;mmin=1000;
		for(int i=0; i<m; i++)
		{
			for(int j=0; j<n; j++)
			{
				cin>>mapk[i][j];
				if(mapk[i][j]==2)
				{
					sx=i;
					sy=j;
					mapk[i][j]=0;	
				}
				else
				if(mapk[i][j]==3)
				{
					ex=i;
					ey=j;
					mapk[i][j]=0;	
				}	
			}	
		}
		
		for(int i=0; i<4; i++)
		{
			int nextx,nexty;
			nextx=sx+f[i][0];
			nexty=sy+f[i][1];
			if(mapk[nextx][nexty]==0&&judge(nextx,nexty))
			{
				flag1=1;
				break;
			}
		}
		
		if(flag1)
		{
			dfs(sx,sy,0);
			if(ff==0)
			{
				cout<<-1<<endl;
			}
			else
			{
				if(mmin>10)
				{
					cout<<"-1"<<endl;
				}
				else
					cout<<mmin<<endl;	
			} 
		}
		else
		{
			cout<<-1<<endl;
		}
	
	
	}
	 
}
#endif


















评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值