Pytorch之卷积层实战

import torchvision
import torch
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10('../Data',train=False,transform=torchvision.transforms.ToTensor(),download=True)
#dataloader
dataloader=DataLoader(dataset,batch_size=64)

#神经网络
#torch.nn.Conv2d(in_channels, out_channels, kernel_size(卷积核), stride=1, padding=0(扩充),dilation=1, groups=1(常为一),
# bias=True(偏置), padding_mode='zeros', device=None, dtype=None)
class Sjnet(nn.Module):
    def __init__(self):
        super(Sjnet, self).__init__()#继承父类
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0,)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

sjnet=Sjnet()

#tensorboard展示图象
writer=SummaryWriter('logs')
i=0
for data in dataloader:
    imgs,targets=data
    output=sjnet(imgs)
    print(output.shape)#输出卷积后的图片信息
    writer.add_images('input', imgs, i)#展示没有卷积之前的图像
    output=torch.reshape(output,(-1,3,30,30))#修改卷积后的图像
    writer.add_images('output',output,i)#展示卷积后的图像
    i=i+1

writer.close()

input:

output:

值得注意的是,卷积层的输入数据张量的维度应该符合卷积层的要求。一般来说,输入数据的维度为(batch_size, in_channels, height, width),其中batch_size表示批次大小,in_channels表示输入的通道数,heightwidth表示输入数据的高度和宽度。

卷积层的输出数据张量的维度为(batch_size, out_channels, output_height, output_width),其中out_channels表示输出的通道数,output_heightoutput_width表示输出数据的高度和宽度,这些维度的计算取决于输入数据的维度、卷积核的大小、步长和填充等参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JayGboy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值