import torchvision
import torch
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset=torchvision.datasets.CIFAR10('../Data',train=False,transform=torchvision.transforms.ToTensor(),download=True)
#dataloader
dataloader=DataLoader(dataset,batch_size=64)
#神经网络
#torch.nn.Conv2d(in_channels, out_channels, kernel_size(卷积核), stride=1, padding=0(扩充),dilation=1, groups=1(常为一),
# bias=True(偏置), padding_mode='zeros', device=None, dtype=None)
class Sjnet(nn.Module):
def __init__(self):
super(Sjnet, self).__init__()#继承父类
self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0,)#卷积层
def forward(self,x):
x=self.conv1(x)
return x
sjnet=Sjnet()
#tensorboard展示图象
writer=SummaryWriter('logs')
i=0
for data in dataloader:
imgs,targets=data
output=sjnet(imgs)
print(output.shape)#输出卷积后的图片信息
writer.add_images('input', imgs, i)#展示没有卷积之前的图像
output=torch.reshape(output,(-1,3,30,30))#修改卷积后的图像
writer.add_images('output',output,i)#展示卷积后的图像
i=i+1
writer.close()
input:
output:
值得注意的是,卷积层的输入数据张量的维度应该符合卷积层的要求。一般来说,输入数据的维度为(batch_size, in_channels, height, width)
,其中batch_size
表示批次大小,in_channels
表示输入的通道数,height
和width
表示输入数据的高度和宽度。
卷积层的输出数据张量的维度为(batch_size, out_channels, output_height, output_width)
,其中out_channels
表示输出的通道数,output_height
和output_width
表示输出数据的高度和宽度,这些维度的计算取决于输入数据的维度、卷积核的大小、步长和填充等参数。