YOLOv8:Roboflow公开数据集训练模型

本文介绍了Roboflow平台在计算机视觉数据集管理中的作用,重点讲解了如何使用Roboflow获取公开数据集如COCO和ImageNet,并通过YOLOv8进行模型训练,包括数据集的准备、训练过程和模型导出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Roboflow公开数据集

Roboflow是一个提供计算机视觉数据集管理和处理工具的平台。虽然Roboflow本身并不创建或策划公开数据集,但它提供了一系列功能,帮助用户组织、预处理、增强和导出计算机视觉数据集。

官方网站:https://universe.roboflow.com/

然而,有几个常用的公开数据集可供计算机视觉使用,可以在Roboflow或其他计算机视觉平台上访问和使用这些数据集。以下是一些常用的计算机视觉公开数据集:

  1. COCO(Common Objects in Context):COCO是一个大规模数据集,其中包含带有对象注释的图像,可用于对象检测、分割和字幕生成等任务。

  2. ImageNet:ImageNet是一个包含数百万标记图像的数据集,涵盖了数千个类别。它被广泛用于图像分类和深度学习研究。

  3. Open Images:Open Images是一个包含数百万图像及其对象检测、分割和视觉关系注释的数据集。

  4. Pascal VOC:Pascal VOC数据集是一个包含图像及其对象检测、分割和分类注释的集合。它常用于计算机视觉算法的基准测试。

  5. Cityscapes:Cityscapes是一个专注于城市场景的数据集,包含高质量图像以及像素级别的语义分割和实例分割注释。

  6. LFW(Labeled Faces in the Wild):LFW是一个包含从网络收集的人脸图像的数据集。它常用于人脸识别任务。

部署安装YOLOv8环境

Github官方网址:https://github.com/ultralytics/ultralytics

安装和部署YOLOv8:http://t.csdnimg.cn/iGwXY

下载Roboflow公开数据集

打开官方网站:https://universe.roboflow.com/

 选择自己需要的数据集:

点击左旁工具栏的Dataset:

 由于我们需要的是在YOLOv8下训练的数据集,故点击YOLOv8

 

 在窗口中选择download zip to computer(下载压缩包至电脑)

即可下载完成

训练数据集

打开pycharm,在安装好的YOLOv8项目下新建datasets文件夹

 将下载好的Roboflow公开数据集(我下载的animals数据集)解压到datasets文件夹中,目录格式如下:

 注:coco128是另外一个数据集。

此时打开animals数据集文件夹中的data.yaml文件:

train: ../train/images
val: ../valid/images
test: ../test/images

nc: 10
names: ['cat', 'chicken', 'cow', 'dog', 'fox', 'goat', 'horse', 'person', 'racoon', 'skunk']

roboflow:
  workspace: roboflow-100
  project: animals-ij5d2
  version: 2
  license: CC BY 4.0
  url: https://universe.roboflow.com/roboflow-100/animals-ij5d2/dataset/2

此数据集共分为10类,训练、测试的地址都有给出。

在确保文件目录格式正确,存在yaml文件之后,打开pycharm终端控制器:

一定要进入所建的YOLOv8环境中。

模型训练在终端运行:

yolo detect train data=datasets/animals/data.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=4 lr0=0.01 resume=True

注意:data=后要填写数据集文件夹中的yaml文件的绝对地址,相对地址可能会报错。

当然在训练的代码中会有许多参数,以上所填的是常用的训练参数,完整的训练参数如下:

 

 

 

 可参考YOLOv8文档https://docs.ultralytics.com/modes/train/

 按回车即可开始训练数据集,系统将自动将训练好的模型保存至runs/detect/train文件夹下:

 其中weights文件中为,最后一次训练的模型last.pt以及效果最好的一次模型best.pt

以及数据集的标签图等:

 验证数据集

 在终端命令行输入:

yolo detect val data=E:\python_project\ultralytics-main\datasets\animals\data.yaml model=runs/detect/train/weights/best.pt batch=4

产生输出:

 其验证结果将保存至runs\detect\val文件夹下:

 可以看出训练的模型产生了较好的预测结果。

模型导出

使用下面的命令就可以导出模型:

yolo task=detect mode=export model=ultralytics/yolo/v8/detect/runs/detect/train/weights/best.pt 

参考

2023最新-用yolov8训练自己的数据集

http://t.csdnimg.cn/q6Gbb

YOLOv8教程系列:一、使用自定义数据集训练YOLOv8模型

http://t.csdnimg.cn/H5et2

### 如何从 Roboflow 下载预训练模型 要从 Roboflow 下载预训练模型,可以按照以下方法操作: #### 方法一:通过 API 或 Python SDK 获取预训练模型 Roboflow 提供了一个便捷的方式,可以通过其 API 或者 Python SDK 来获取已经训练好的模型。以下是具体实现方式的一个例子[^3]。 ```python from roboflow import Roboflow rf = Roboflow(api_key="YOUR_API_KEY") # 替换 YOUR_API_KEY 为你自己的 Roboflow API Key project = rf.workspace().project("PROJECT_NAME") # 替换 PROJECT_NAME 为你的项目名称 model = project.version(1).model # 加载指定版本的模型 # 导出 ONNX 格式的模型文件 model.export("onnx") ``` 此代码片段展示了如何利用 Roboflow 的 Python SDK 轻松加载特定项目的预训练模型,并将其导出为其他格式(如 ONNX),以便进一步优化或部署[^4]。 --- #### 方法二:手动下载预训练模型权重 如果不想使用编程接口,也可以直接访问 Roboflow 平台上的对应页面来完成这一任务。登录到 Roboflow 官方网站后,在目标数据集的工作区中找到已有的训练记录。点击进入某个已完成的训练实验详情页,通常会有一个选项可以直接下载最终生成的最佳权重文件(`.pt` 文件或其他格式)。这些文件包含了完整的网络结构以及学习后的参数值,可供后续推理或者微调用途[^1]。 例如,执行如下命令可以从远程服务器拉取压缩包形式的数据集资源至本地环境: ```bash curl -L "https://app.roboflow.com/ds/O3yzJrLQfA?key=XXXXXXX" > roboflow.zip && unzip roboflow.zip && rm roboflow.zip ``` 虽然这条指令主要用于同步原始图片素材而非实际意义上的“预训练成果”,但它体现了类似的机制——即借助 HTTP 请求配合认证密钥完成资产转移的过程[^2]。 --- #### 注意事项 无论采用哪种途径获得所需的初始状态向量表示,都需要确保所选基础框架版本号与官方发布说明保持一致;否则可能会因为不兼容而导致错误发生。另外值得注意的是,当选择 fine-tune 方案而不是完全重新初始化所有层的时候,则需额外指明路径指向外部导入来的 checkpoint 实例作为起点继续迭代计算过程的一部分配置项设置示例如下所示: ```yaml --cfg ./models/yolov5s.yaml --weights 'path_to_pretrained_weights' ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JayGboy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值