扩展欧几里得

扩展欧几里得算法用于求解二元一次不定方程

ax+by=c

可以证明ax+by的最小正整数是gcd(a,b)。

设:ax+by=bx'+(a mod b)y'=gcd(a,b),  g=gcd(a,b)

a mod b=a-[a/b]*b    //[a/b]暂且认为表示a除以b的下取整。。。

则有:

g=bx'+(a mod b)y'

 =bx'+(a-[a/b]*b)y'

 =bx'+ay'-[a/b]*by'

 =ay'+b(x'-[a/b]y')=ax+by

 

从最后的化简结果可以看出求解二元一次不定方程可以用递归做。

不断调用gcd,到最后a=1,b=0是就可以求出x=1,y=0,再往上带。

这里的x,y就相当于上一层递归中的x',y',代入ay'+b(x'-[a/b]y')=ax+by,求解x,y

 

最后x0=x*(c/g)  y0=y*(c/g)

 

对于方程其他的解:

设:

ax+by=ax'+by'

移项得:

a(x-x')=b(y'-y)

[a(x-x')]/gcd(a,b)=[b(y'-y)]/gcd(a,b)

因为a/gcd(a,b)⊥b/gcd(a,b)

所以x-x'=t*b/gcd(a,b)  y'-y=t*a/gcd(a,b)

x=x'+t*b/gcd(a,b)  y=y'-t*a/gcd(a,b)

 

CODE

 

function extended_gcd(a,b: longint ; var x,y: longint ): longint ;
var t: longint ;
begin
   if b= 0 then
   begin
     extended_gcd:=a;
     x:= 1 ; y:= 0 ;
   end else
   begin
     extended_gcd:=extended_gcd(b,a mod b,x,y);
     t:=x; x:=y; y:=t-(a div b)*y;
   end ;
end ;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值