【清华集训2017】生成树计数 &【WC2019】数树

这篇博客介绍了如何利用Prüfer序列解决生成树计数问题,包括两种解题套路,涉及多项式与EGF。此外,还探讨了扩展Prüfer序列在连通块问题上的应用,特别是在WC2019数树题目中的解决方案。通过转换树的结构和利用连通块的性质,得出生成树的计数公式,并用这些公式来处理不同的树形结构问题。
摘要由CSDN通过智能技术生成

《生成树计数》

清华集训2017 D1T1 生成树计数

题目大意

n ≤ 30000 n\le30000 n30000 个块分别含 a i a_i ai 个点,度数 d i d_i di 造成权值 v a l ( d ) = ( ∏ i = 1 n d i m ) ( ∑ i = 1 n d i m ) val(d) = (\prod_{i=1}^n d_i^m ) (\sum_{i=1}^n d_i^m) val(d)=(i=1ndim)(i=1ndim)。求所有生成树的权值和。

套路一

先不考虑后面那个 ∑ \sum ,那么可以表示为若干个 w ( d i ) = d i m w(d_i)=d_i^m w(di)=dim 的积。

用 egf 分配 prufer 序列的位置,若第 i i i 个块分到 c i c_i ci 个位置,那么其度数为 d i = c i + 1 d_i=c_i+1 di=ci+1。并且要为每个度数决定连接哪个点,即 a i c i + 1 a_i^{c_i+1} aici+1

( ∏ a i ) ∑ ∑ c i = n − 2 ( n − 2 ) ! ∏ c i ! ∏ a i c i w ( c i + 1 ) (\prod a_i)\sum_{\sum c_i=n-2}\frac{(n-2)!}{\prod c_i!}\prod a_i^{c_i}w(c_i+1) (ai)ci=n2ci!(n2)!aiciw(ci+1)

这里把公因子 ( ∏ a i ) (\prod a_i) (ai) 提到了前面。 ( n − 2 ) ! ∏ c i ! \frac{(n-2)!}{\prod c_i!} ci!(n2)! 是分配位置,用 egf 搞掉。

那么块 i i i 的 egf F i ( x ) = ∑ x k k ! a i k w ( k + 1 ) F_i(x) = \sum\frac{x^k}{k!} a_i^k w(k+1) Fi(x)=k!xkaikw(k+1) 【不要漏写+1】

可以发现如果设 F ( x ) = ∑ x k k ! w ( k + 1 ) F(x) = \sum\frac{x^k}{k!} w(k+1) F(x)=k!

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值