【清华集训2017】生成树计数(生成函数)(prufer序列)(牛顿恒等式)

传送门


题解:

凭借直觉 按照套路,考虑每个原来的连通块当成点,枚举prufer序列,假设第 i i i 个连通块在 prufer 序列中出现了 c i c_i ci 次,不难发现对应的合法的 prufer 序列有 ( n − 2 ) ! / ∏ i c i ! (n-2)!/\prod_i c_i! (n2)!/ici!,对应全树还需要乘上 ∏ i a i c i + 1 \prod_i a_i^{c_i+1} iaici+1

这样我们可以得到答案的表达式:

A n s = ∑ ∑ c = n − 2 ( n − 2 ) ! ∏ i = 1 n c i ! ∏ i = 1 n a i c i + 1 ∏ j = 1 n ( c i + 1 ) m ∑ k = 1 n ( c i + 1 ) m Ans=\sum_{\sum c=n-2}\frac{(n-2)!}{\prod_{i=1}^n c_i!}\prod_{i=1}^na_i^{c_i+1}\prod_{j=1}^n(c_i+1)^m\sum_{k=1}^n(c_i+1)^m Ans=c=n2i=1nci!(n2)!i=1naici+1j=1n(ci+1)mk=1n(ci+1)m

j = k j=k j=k 的部分拿出来得到:

A n s = ( n − 2 ) ! ∑ ∑ c = n − 2 ∑ i = 1 n ( ( c i + 1 ) 2 m a i c i + 1 c i ! ∏ j ≠ i ( c j + 1 ) m a j c j + 1 c j ! ) Ans=(n-2)!\sum_{\sum c=n-2}\sum_{i=1}^n(\frac{(c_i+1)^{2m}a_i^{c_i+1}}{c_i!}\prod_{j\neq i}\frac{(c_j+1)^{m}a_j^{c_j+1}}{c_j!}) Ans=(n2)!c=n2i=1n(ci!(ci+1)2maici+1j=icj!(cj+1)majcj+1)

A j ( x ) = ∑ i ( i + 1 ) 2 m a j i x i i ! , B j ( x ) = ∑ i ( i + 1 ) m a j i x i i ! A_j(x)=\sum_{i}(i+1)^{2m}a_j^i\frac{x^i}{i!},B_j(x)=\sum_{i}(i+1)^{m}a_j^i\frac{x^i}{i!} Aj(x)=i(i+1)2majii!xi,Bj(x)=i(i+1)majii!xi

不难发现原式后半截提出来一个 ∏ i a i \prod_i a_i iai 之后就是:
[ x n − 2 ] ∑ i = 1 n ( A i ( x ) ∏ j ≠ i B j ( x ) ) [x^{n-2}]\sum_{i=1}^n (A_i(x)\prod_{j\neq i}B_j(x)) [xn2]i=1n(Ai(x)j=iBj(x))

这个多项式也可以看做:

( ∑ i = 1 n A i ( x ) B i ( x ) ) ( ∏ j = 1 n B j ( x ) ) \left(\sum_{i=1}^n\frac{A_i(x)}{B_i(x)}\right)\left(\prod_{j=1}^n B_j(x)\right) (i=1nBi(x)Ai(x))(j=1nBj(x))

显然现在要做的就是把这两个多项式求出来,然后就结束了。

A ( x ) = ∑ i ( i + 1 ) 2 m x i i ! , B ( x ) = ∑ i ( i + 1 ) m x i i ! A(x)=\sum_{i}(i+1)^{2m}\frac{x^i}{i!},B(x)=\sum_{i}(i+1)^{m}\frac{x^i}{i!} A(x)=i(i+1)2mi!xi,B(x)=i(i+1)mi!xi,不难发现 A i ( x ) = A ( a i x ) , B i ( x ) = B ( a i x ) A_i(x)=A(a_ix),B_i(x)=B(a_ix) Ai(x)=A(aix),Bi(x)=B(aix)

显然上式后面的 ∏ \prod 可以转化为 exp ⁡ ( ∑ i ln ⁡ ( B i ( x ) ) ) \exp(\sum_i \ln(B_i(x))) exp(iln(Bi(x)))

我们从多项式复合和求和的角度看这个问题,显然我们只需要求出 ∑ \sum 内的幂级数,然后把第 i i i 项系数乘上 ∑ j a j i \sum_j a_j^i jaji 即可,现在需要支持求一下等幂和。

等幂和的做法很多,我用的是牛顿恒等式,但是注意牛顿恒等式在指数为 0 0 0 的时候不能用,需要特殊处理。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const

using std::cerr;
using std::cout;

cs int mod=998244353;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
inline int dec(int a,int b){return a-b<0?a-b+mod:a-b;}
inline int mul(int a,int b){ll r=(ll)a*b;return r>=mod?r%mod:r;}
inline void Inc(int &a,int b){a+=b-mod;a+=a>>31&mod;}
inline void Dec(int &a,int b){a-=b;a+=a>>31&mod;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int po(int a,int b){int r=1;for(;b;b>>=1,Mul(a,a))if(b&1)Mul(r,a);return r;}
inline void ex_gcd(int a,int b,int &x,int &y){
	if(!b){x=1,y=0;return;}ex_gcd(b,a%b,y,x);y-=a/b*x;
}inline int Inv(int a){int x,y;ex_gcd(mod,a,y,x);return x+(x>>31&mod);}


cs int bit=18,SIZE=1<<bit|7;

int r[SIZE],*w[bit+1],Len[SIZE];

void init_omega(){
	for(int re i=1;i<=bit;++i)
		w[i]=new int[1<<(i-1)];
	int wn=po(3,(mod-1)>>bit);w[bit][0]=1;
	for(int re i=1;i<(1<<(bit-1));++i)
		w[bit][i]=mul(w[bit][i-1],wn);
	for(int re i=bit-1;i;--i)
		for(int re j=0;j<(1<<(i-1));++j)
			w[i][j]=w[i+1][j<<1];
	for(int re i=Len[0]=1;i<SIZE;++i)
		Len[i]=Len[i-1]<<(Len[i-1]<i);
}

int inv[SIZE],fac[SIZE],_fac[SIZE];
void init_fac(){
	fac[0]=fac[1]=1;
	inv[0]=inv[1]=1;
	_fac[0]=_fac[1]=1;
	for(int re i=2;i<SIZE;++i){
		fac[i]=mul(fac[i-1],i);
		inv[i]=mul(inv[mod%i],mod-mod/i);
		_fac[i]=mul(_fac[i-1],inv[i]);
	}
}

int len,inv_len;
void init_len(int deg){
	len=Len[deg],inv_len=inv[len];
	for(int re i=1;i<len;++i)
		r[i]=r[i>>1]>>1|((i&1)?len>>1:0); 
}

void DFT(int *A){
	for(int re i=1;i<len;++i)
		if(i<r[i])std::swap(A[i],A[r[i]]);
	for(int re i=1,d=1;i<len;i<<=1,++d)
		for(int re j=0;j<len;j+=i<<1)
			for(int re k=0;k<i;++k){
				int &t1=A[j+k],&t2=A[i+j+k];
				int t=mul(t2,w[d][k]);
				t2=dec(t1,t);Inc(t1,t);
			}
}void IDFT(int *A){
	DFT(A);std::reverse(A+1,A+len);
	for(int re i=0;i<len;++i)
		Mul(A[i],inv_len);
}

typedef std::vector<int> Poly;

inline void DFT(Poly &A){DFT(&A[0]);}
inline void IDFT(Poly &A){IDFT(&A[0]);}

Poly operator+(Poly a,cs Poly &b){
	if(a.size()<b.size())a.resize(b.size());
	for(size_t re i=0;i<b.size();++i)
		Inc(a[i],b[i]);return a;
}Poly operator-(Poly a,cs Poly &b){
	if(a.size()<b.size())a.resize(b.size());
	for(size_t re i=0;i<b.size();++i)
		Dec(a[i],b[i]);return a;
}Poly operator*(Poly a,Poly b){
	if(!a.size()||!b.size())
		return Poly();
	int deg=a.size()+b.size()-1;
	init_len(deg);
	a.resize(len),DFT(a);
	b.resize(len),DFT(b);
	for(int re i=0;i<len;++i)
		Mul(a[i],b[i]);
	IDFT(a);return Poly(a.begin(),a.begin()+deg);
}Poly Deriv(Poly a){
	if(!a.size())return a;
	for(size_t re i=1;i<a.size();++i)
		a[i-1]=mul(a[i],i);
	a.pop_back();return a; 
}Poly Integ(Poly a){
	if(!a.size())return a;
	a.push_back(0);
	for(size_t re i=a.size()-1;i;--i)
		a[i]=mul(a[i-1],inv[i]);
	a[0]=0;return a;
}Poly Inv(cs Poly &a,int lim){
	int n=a.size();Poly c,b(1,Inv(a[0]));
	for(int re l=4;(l>>2)<lim;l<<=1){
		init_len(l);c.resize(l>>1);
		for(int re i=0;i<(l>>1);++i)
			c[i]=i<n?a[i]:0;
		c.resize(l),DFT(c);
		b.resize(l),DFT(b);
		for(int re i=0;i<l;++i)
			Mul(b[i],dec(2,mul(b[i],c[i])));
		IDFT(b);b.resize(l>>1);
	}return Poly(b.begin(),b.end()+lim);
}Poly Ln(Poly a,int lim){
	a=Deriv(a)*Inv(a,lim);
	a.resize(lim+1);return Integ(a);
}Poly Exp(cs Poly &a,int lim){
	int n=a.size();Poly c,b(1,1);
	for(int re i=2;(i>>1)<lim;i<<=1){
		c=Ln(b,i);Dec(c[0],1);
		for(int re j=0;j<i;++j)
			c[j]=dec(j<n?a[j]:0,c[j]);
		b=b*c;b.resize(i);
	}return Poly(b.begin(),b.begin()+lim);
}

cs int N=3e4+7;

int n,m,a[N];

Poly solve(int l,int r){
	if(l==r){return {dec(0,a[l]),1};}
	int mi=(l+r)>>1;
	return solve(l,mi)*solve(mi+1,r);
}

void Main(){
	scanf("%d%d",&n,&m);
	for(int re i=1;i<=n;++i)
		scanf("%d",a+i);
	init_omega();init_fac();
	Poly F=solve(1,n),G(n+1);
	std::reverse(F.begin(),F.end());
	for(int re i=0;i<=n;++i)G[i]=mul(mod-i,F[i]);
	G=G*Inv(F,n+1);G[0]=n;
	Poly A(n-1),B(n-1);
	for(int re i=0;i<n-1;++i){
		A[i]=mul(po(i+1,m+m),_fac[i]);
		B[i]=mul(po(i+1,m),_fac[i]);
	}A=A*Inv(B,n-1);B=Ln(B,n-1);
	for(int re i=0;i<n-1;++i)
		Mul(A[i],G[i]),Mul(B[i],G[i]);
	B=Exp(B,n);int ans=0;
	for(int re i=0;i<n-1;++i)
		Inc(ans,mul(A[i],B[n-2-i]));
	for(int re i=1;i<=n;++i)
		Mul(ans,a[i]);
	cout<<mul(ans,fac[n-2])<<"\n";
}

inline void file(){
#ifdef zxyoi
	freopen("tree.in","r",stdin);
#endif
}signed main(){file();Main();return 0;} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值