HDU 3853 LOOPS(期望dp)

题目传送门

题意: 给你一个 n ∗ m n*m nm的距阵,你开始在 ( 1 , 1 ) (1,1) (1,1)点,你要走到 ( n , m ) (n,m) (n,m)点。你在每个点有三种可能性。

  1. 原地不动,可能性为 a [ i ] [ j ] [ 0 ] a[i][j][0] a[i][j][0]
  2. 向右走一步,可能性为 a [ i ] [ j ] [ 1 ] a[i][j][1] a[i][j][1]
  3. 向下走一步,可能性为 a [ i ] [ j ] [ 2 ] a[i][j][2] a[i][j][2]

保证输入的合法性,每次走一步花费的体力值为2,问你走到终点期望花费多少体力?

思路: 很容易想到 f [ i ] [ j ] f[i][j] f[i][j]表示当你在 ( i , j ) (i,j) (i,j)时,走到终点所需要体力的期望值。那么就有:
f [ i ] [ j ] = a [ i ] [ j ] [ 0 ] ∗ f [ i ] [ j ] + a [ i ] [ j ] [ 1 ] ∗ f [ i ] [ j + 1 ] + a [ i ] [ j ] [ 2 ] ∗ f [ i + 1 ] [ j ] + 2 f[i][j]=a[i][j][0]*f[i][j]+a[i][j][1]*f[i][j+1]+a[i][j][2]*f[i+1][j]+2 f[i][j]=a[i][j][0]f[i][j]+a[i][j][1]f[i][j+1]+a[i][j][2]f[i+1][j]+2,整理一下就有: f [ i ] [ j ] = a [ i ] [ j ] [ 1 ] ∗ f [ i ] [ j + 1 ] + a [ i ] [ j ] [ 2 ] ∗ f [ i + 1 ] [ j ] + 2 1 − a [ i ] [ j ] [ 0 ] f[i][j]=\frac{a[i][j][1]*f[i][j+1]+a[i][j][2]*f[i+1][j]+2}{1-a[i][j][0]} f[i][j]=1a[i][j][0]a[i][j][1]f[i][j+1]+a[i][j][2]f[i+1][j]+2
但是因为如果a[i][j][0]=1的时候,走到这个点就走不出去了,所以需要对这个点特判一下( f [ i ] [ j ] = 0 f[i][j]=0 f[i][j]=0,即不计算这个点的代价)。

代码:

#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ls p<<1
#define rs p<<1|1
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define ll long long
#define int long long
#define lowbit(x) x&-x
#define pii pair<int,int>
#define ull unsigned long long
#define pdd pair<double,double>
#define sz(x) (int)(x).size()
#define all(x) (x).begin(),(x).end()
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
char *fs,*ft,buf[1<<20];
#define gc() (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<20,stdin),fs==ft))?0:*fs++;
inline int read()
{
    int x=0,f=1;
    char ch=gc();
    while(ch<'0'||ch>'9')
    {
        if(ch=='-')
            f=-1;
        ch=gc();
    }
    while(ch>='0'&&ch<='9')
    {
        x=x*10+ch-'0';
        ch=gc();
    }
    return x*f;
}
using namespace std;
const int N=2e5+666;
const int inf=0x3f3f3f3f;
const int mod=998244353;
const double eps=1e-7;
const double PI=acos(-1);

double a[1111][1111][3],f[1111][1111];
int solve()
{
    int n,m;
    while(scanf("%lld%lld",&n,&m)!=EOF)
    {
        for(int i=1; i<=n; i++)
            for(int j=1; j<=m; j++)
                for(int k=0; k<3; k++)
                    scanf("%lf",&a[i][j][k]);
        memset(f,0,sizeof f);
        for(int i=n;i>=1;i--)
        {
            for(int j=m;j>=1;j--)
            {
                if((i==n&&j==m)||a[i][j][0]==1.0)
                    continue;
                f[i][j]=a[i][j][1]*f[i][j+1]+a[i][j][2]*f[i+1][j]+2;
                f[i][j]/=(1.0-a[i][j][0]);
            }
        }
        printf("%.3f\n",f[1][1]);
    }
}
signed main()
{
    solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值