P2257 YY的GCD(莫比乌斯反演,多组询问)

题目传送门

tips:本题是题P2568的强化版,如果不会本题可以先试试P2568。

题意:

给出 T ( 1 ≤ T ≤ 1 0 4 ) T(1\le T\le 10^4) T(1T104) 组询问,每组询问一对 n , m n,m n,m,让你求出:
a n s = ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) ∈ { p r i m e } ] ans=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\left[gcd(i,j)∈\{prime\}\right] ans=i=1nj=1m[gcd(i,j){prime}]

思路:

假定你已经会了弱化版,并且不知道如何处理多组数据。
我们从这个式子开始: ∑ p ∈ { p r i m e } ∑ d = 1 ⌊ n p ⌋ μ ( d ) ⌊ n p d ⌋ ∗ ⌊ m p d ⌋ \sum\limits_{p∈\{prime\}}\sum\limits_{d=1}^{\lfloor \frac{n}{p} \rfloor}\mu(d)\lfloor\cfrac{n}{pd}\rfloor*\lfloor\cfrac{m}{pd}\rfloor p{prime}d=1pnμ(d)pdnpdm
当我们推到这个式子的时候,已经可以通过弱化版的题目了,直接枚举质数然后整除分块求答案就行了。
但是本题有 1 0 4 10^4 104组数据,我们不可能再这样枚举,因为算一下时间复杂度明显太大了,于是我们想办法优化。我们设 Q = p d Q=pd Q=pd,则
原 式 = ∑ p ∈ { p r i m e } ∑ d = 1 ⌊ n p ⌋ μ ( d ) ⌊ n Q ⌋ ∗ ⌊ m Q ⌋ 原式=\sum\limits_{p∈\{prime\}}\sum\limits_{d=1}^{\lfloor \frac{n}{p} \rfloor}\mu(d)\lfloor\cfrac{n}{Q}\rfloor*\lfloor\cfrac{m}{Q}\rfloor =p{prime}d=1pnμ(d)QnQm
然后我们枚举 Q Q Q,可以得到式子 ∑ Q = 1 n ⌊ n Q ⌋ ∗ ⌊ m Q ⌋ ∗ ∑ p ∈ { p r i m e } , p ∣ Q μ ( Q p ) \sum\limits_{Q=1}^{n}\lfloor\cfrac{n}{Q}\rfloor*\lfloor\cfrac{m}{Q}\rfloor*\sum\limits_{p∈\{prime\},p|Q}\mu\left(\cfrac{Q}{p}\right) Q=1nQnQmp{prime},pQμ(pQ)
我们设 f ( Q ) = ∑ p ∈ { p r i m e } , p ∣ Q μ ( Q p ) f(Q)=\sum\limits_{p∈\{prime\},p|Q}\mu\left(\cfrac{Q}{p}\right) f(Q)=p{prime},pQμ(pQ)
然后我们可以利用欧拉筛 O ( n ) O(n) O(n)先把 μ ( i ) \mu(i) μ(i)求出来,然后利用埃氏筛的思想,在 O ( n l o g l o g n ) O(nloglogn) O(nloglogn)的复杂度内把 f ( Q ) f(Q) f(Q)求出来,并做一下前缀和,为整除分块做准备。

前面那一坨当然可以用整除分块求了,预处理的复杂度为 O ( n l o g l o g n ) O(nloglogn) O(nloglogn),计算的复杂度为 O ( T ∗ n ) O(T*\sqrt n) O(Tn )

C o d e Code Code

// Author : ACfunhsl
// Time : 2021/5/17 14:13:11
#define int long long
const int N = 1e7+50;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
bool ok[N];
int p[N],cnt=0,mu[N],f[N];
void euler()
{
	mu[1] = 1;
	for(int i=2; i<N; i++)
	{
		if(!ok[i])
		{
			p[++cnt] = i;
			mu[i] = -1;
		}
		for(int j=1; j<=cnt&&i*p[j]<N; j++)
		{
			ok[i*p[j]] = 1;
			if(i%p[j]==0) break;
			mu[i*p[j]] = -mu[i];
		}
	}
	for(int i=1;i<=cnt;i++)
		for(int j=1;j*p[i]<N;j++)
			f[j*p[i]] += mu[j];
	for(int i=1; i<N; i++)
		f[i] += f[i-1];
}
int cal(int n,int m)
{
	int res = 0;
	for(int l=1,r; l<=n; l=r+1)
	{
		r = min(n/(n/l),m/(m/l));
		res += (n/l)*(m/l)*(f[r] - f[l-1]);
	}
	return res;
}
signed main()
{
	euler();
	int t;
	cin>>t;
	while(t--)
	{
		int n,m;
		cin>>n>>m;
		if(n>m)
			swap(n,m);
		cout<<cal(n,m)<<endl;
	}

	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值