https://www.luogu.org/problem/P2257
感觉这道题还是很难,公式推到一半觉得推不动了,而且觉得那复杂度还是很高。
首先设函数如下:
我们开始推公式:
我们的答案ans
我们令d/n=t我们可以得到
得到这样的公式已经很可以了,但不过还不能得到答案,因为这样复杂度还很高
我们另tp=T
然后我们换一下枚举的变量,枚举变量T
然后可以预处理后面的莫比乌斯函数,对于一个质数t,他的所有倍数T都要加上他的莫比乌斯函数值。
对于前面的那部分可以整除分块来解决,这样复杂度是可以过的
#include "bits/stdc++.h"
using namespace std;
const double eps = 1e-8;
#define reg register
#define lowbit(x) x&-x
#define pll pair<ll,ll>
#define pii pair<int,int>
#define fi first
#define se second
#define makp make_pair
int dcmp(double x) {
if (fabs(x) < eps) return 0;
return (x > 0) ? 1 : -1;
}
typedef long long ll;
typedef unsigned long long ull;
const ull hash1 = 201326611;
const ull hash2 = 50331653;
const int N = 10000000 + 10;
const int M = 1000 + 10;
const int inf = 0x3f3f3f3f;
const ll mod = 998244353;
int vis[N], pri[N], cnt, mu[N];
ll g[N], sum[N];
void init() {
vis[1] = mu[1] = 1;
cnt = 0;
for (int i = 1; i < N; i++) {
if (!vis[i]) {
pri[++cnt] = i;
mu[i] = -1;
}
for (int j = 1; j <= cnt && i * pri[j] < N; j++) {
vis[i * pri[j]] = 1;
if (i % pri[j] == 0) break;
mu[i * pri[j]] = -mu[i];
}
}
}
ll get_sum() {
for (int i = 1; i <= cnt; i++) {
for (int j = 1; j * pri[i] < N; j++) {
g[j * pri[i]] += mu[j];
}
}
for (int i = 1; i < N; i++) sum[i] = sum[i - 1] + g[i];
}
ll solve(int n, int m) {
ll ans = 0;
for (int l = 1, r; l <= min(n, m); l = r + 1) {
r = min(n / (n / l), m / (m / l));
ans += 1LL * (n / l) * (m / l) * (sum[r] - sum[l - 1]);
}
return ans;
}
int main() {
int T;
init();
get_sum();
scanf("%d", &T);
while (T--) {
int n, m;
scanf("%d%d", &n, &m);
printf("%lld\n", solve(n, m));
}
return 0;
}